hal_x86_64/cpu/msr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
//! x86_64 [Model-Specific Register][msr] (MSR)s.
//!
//! Model-specific registers are used to configure features of the CPU that may
//! not be available on all x86 processors, such as memory type-range,
//! sysenter/sysexit, local APIC, et cetera.
//!
//! This module contains the [`Msr`] type for accessing model-specific
//! registers. In addition, since most MSRs contain bitflags, this module also
//! contains bitflags types defining the flags that can be set in a particular
//! MSR.
//!
//! See the documentation for the [`Msr`] type for details on using MSRs.
//!
//! [msr]: https://wiki.osdev.org/MSR
#![warn(missing_docs)]
use core::{arch::asm, marker::PhantomData};
use mycelium_util::{
bits::{bitfield, FromBits},
fmt,
};
use raw_cpuid::CpuId;
/// An x86_64 [Model-Specific Register][msr] (MSR).
///
/// Model-specific registers are used to configure features of the CPU that may
/// not be available on all x86 processors, such as memory type-range,
/// sysenter/sysexit, local APIC, et cetera. MSRs are available on P6 and later
/// x86 processors (and are present on all 64-bit x86 CPUs). The
/// [`Msr::has_msrs`] method can be used to check if the CPU has MSRs. Note
/// that this method does *not* check whether a particular MSR is available.
///
/// See [sandpile.org's MSR list][sandpile] for a list of documented MSRs and
/// their values.
///
/// # Typed MSRs
///
/// MSRs may be accessed as raw `u64` values (using [`Msr::read_raw`] and
/// [`Msr::write_raw`]), or may be constructed with a type parameter
/// implementing the [`mycelium_util::bits::FromBits`] trait, which is
/// automatically converted to and from its binary representation when
/// reading/writing to the MSR.
///
/// When a typed representation of a MSR's value is available, a special
/// constructor is provided for accessing that MSR in a typed manner.
///
/// # MSR Constructors
///
/// This type provides a number of constructors which construct a [`Msr`] for
/// accessing a specific model-specific register by name. The following
/// constructors are currently provided:
///
/// - [`Msr::ia32_apic_base`] for accessing the [`IA32_APIC_BASE`] MSR, which
/// stores the base address of the local APIC's memory-mapped configuration
/// area.
///
/// - [`Msr::ia32_gs_base`] for accessing the [`IA32_GS_BASE`] MSR, which stores
/// the base address of the `GS` segment.
///
/// - [`Msr::ia32_efer`] for accessing the [Extended Flags Enable Register
/// (EFER)][efer], which contains flags for enabling long mode and controlling
/// long-mode-specific features.
///
/// Flags for the `IA32_EFER` MSR are represented by the [`Efer`] type.
///
/// [sandpile]: https://sandpile.org/x86/msr.htm
/// [msr]: https://wiki.osdev.org/MSR
/// [efer]: https://wiki.osdev.org/CPU_Registers_x86-64#IA32_EFER
/// [`IA32_APIC_BASE`]: https://wiki.osdev.org/APIC#Local_APIC_configuration
/// [`IA32_GS_BASE`]: https://wiki.osdev.org/CPU_Registers_x86-64#FS.base.2C_GS.base
pub struct Msr<V = u64> {
pub(crate) num: u32,
name: Option<&'static str>,
_ty: PhantomData<fn(V)>,
}
bitfield! {
/// Bit flags for the [Extended Feature Enable Register (EFER)][efer] [`Msr`].
///
/// This MSR was added by AMD in the K6 processor, and became part of the
/// architecture in AMD64. It controls features related to entering long mode.
///
/// To access the EFER, use the [`Msr::ia32_efer`] constructor.
///
/// [efer]: https://wiki.osdev.org/CPU_Registers_x86-64#IA32_EFER
pub struct Efer<u64> {
/// System Call Extensions (SCE).
///
/// This enables the `SYSCALL` and `SYSRET` instructions.
pub const SYSTEM_CALL_EXTENSIONS: bool;
const _RESERVED_0 = 7;
/// Long Mode Enable (LME).
///
/// Setting this bit enables long mode.
pub const LONG_MODE_ENABLE: bool;
const _RESERVED_1 = 1;
/// Long Mode Active (LMA).
///
/// This bit is set if the processor is in long mode.
pub const LONG_MODE_ACTIVE: bool;
/// No-Execute Enable (NXE).
pub const NO_EXECUTE_ENABLE: bool;
/// Secure Virtual Machine Enable (SVME).
pub const SECURE_VM_ENABLE: bool;
/// Long Mode Segment Limit Enable (LMSLE).
pub const LONG_MODE_SEGMENT_LIMIT_ENABLE: bool;
/// Fast `FXSAVE`/`FXRSTOR` (FFXSR).
pub const FAST_FXSAVE_FXRSTOR: bool;
/// Translation Cache Extension (TCE).
pub const TRANSLATION_CACHE_EXTENSION: bool;
}
}
impl Msr {
/// Returns `true` if this processor has MSRs.
///
/// # Notes
///
/// This does *not* check whether the given MSR number is valid on this platform.
#[must_use]
pub fn has_msrs() -> bool {
CpuId::new()
.get_feature_info()
.map(|features| features.has_msr())
.unwrap_or(false)
}
/// Returns a new `Msr` for reading/writing to the given MSR number, or
/// `None` if this CPU does not support MSRs.
///
/// # Notes
///
/// This does *not* check whether the given MSR number is valid on this platform.
#[inline]
#[must_use]
pub fn try_new(num: u32) -> Option<Self> {
if Self::has_msrs() {
Some(Msr {
num,
name: None,
_ty: PhantomData,
})
} else {
None
}
}
/// Returns a new `Msr` for reading/writing to the given MSR number.
///
/// # Panics
///
/// If this CPU does not support MSRs.
///
/// # Notes
///
/// This does *not* check whether the given MSR number is valid on this platform.
pub fn new(num: u32) -> Self {
Self::try_new(num)
.expect("CPU does not support model-specific registers (must be pre-Pentium...)")
}
/// Returns a `Msr` for reading and writing to the [`IA32_APIC_BASE`]
/// model-specific register.
///
/// This register has MSR number 0x1B, and stores the base address of the
/// [local APIC] memory-mapped configuration area.
///
/// [`IA32_APIC_BASE`]: https://wiki.osdev.org/APIC#Local_APIC_configuration
/// [local APIC]: crate::interrupt::apic::LocalApic
#[must_use]
pub const fn ia32_apic_base() -> Self {
Self {
name: Some("IA32_APIC_BASE"),
num: 0x1b,
_ty: PhantomData,
}
}
/// Returns a `Msr` for reading and writing to the [`IA32_GS_BASE`]
/// model-specific register.
///
/// This register has MSR number 0xC0000101, and contains the base address
/// of the `GS` segment.
///
/// [`IA32_GS_BASE`]: https://wiki.osdev.org/CPU_Registers_x86-64#FS.base.2C_GS.base
#[must_use]
pub const fn ia32_gs_base() -> Self {
Self {
name: Some("IA32_GS_BASE"),
num: 0xc000_0101,
_ty: PhantomData,
}
}
/// Returns a `Msr` for reading and writing to the [`IA32_EFER` (Extended
/// Flags Enable Register)][efer] MSR.
///
/// The EFER register has MSR number 0xC0000080, and contains flags for
/// enabling the `SYSCALL` and `SYSRET` instructions, and for entering and
/// exiting long mode, and for enabling features related to long mode.
///
/// Flags for the `IA32_EFER` MSR are represented by the [`Efer`]
/// type.
///
/// [efer]: https://wiki.osdev.org/CPU_Registers_x86-64#IA32_EFER
#[must_use]
pub const fn ia32_efer() -> Msr<Efer> {
Msr {
name: Some("IA32_EFER"),
num: 0xc0000080,
_ty: PhantomData,
}
}
}
impl<V: FromBits<u64>> Msr<V> {
/// Attempt to read a `V`-typed value from the MSR, returning an error if
/// that value is an invalid bit pattern for a `V`-typed value.
///
/// # Returns
///
/// - [`Ok`]`(V`)` if a `V`-typed value was successfully read from the MSR.
/// - [`Err`]`(V::Error)` if the value read from the MSR was an invalid bit
/// pattern for a `V`, as determined by `V`'s implementation of the
/// [`FromBits::try_from_bits`]) method.
pub fn try_read(self) -> Result<V, V::Error> {
V::try_from_bits(self.read_raw())
}
/// Read a `V`-typed value from the MSR.
///
/// # Panics
///
/// If the bits in the MSR are an invalid bit pattern for a `V`-typed value
/// (as determined by `V`'s implementation of the
/// [`FromBits::try_from_bits`]) method).
#[must_use]
pub fn read(self) -> V {
match self.try_read() {
Ok(value) => value,
Err(error) => panic!("invalid value for {self}: {error}"),
}
}
/// Write a value to this MSR.
///
/// # Safety
///
/// The caller is responsible for ensuring that writing the provided value
/// to this MSR doesn't violate memory safety.
pub unsafe fn write(self, value: V) {
self.write_raw(value.into_bits());
}
/// Read this MSR's current value, modify it using a closure, and write back
/// the modified value.
///
/// This is a convenience method for cases where some bits in a MSR should
/// be changed while leaving other values in place.
///
/// # Safety
///
/// The caller is responsible for ensuring that writing the provided value
/// to this MSR doesn't violate memory safety.
pub unsafe fn update(self, f: impl FnOnce(V) -> V) {
self.write(f(self.read()));
}
}
impl<V> Msr<V> {
/// Reads this MSR, returning the raw `u64` value.
#[inline]
#[must_use]
pub fn read_raw(self) -> u64 {
let (hi, lo): (u32, u32);
unsafe {
asm!(
"rdmsr",
in("ecx") self.num,
out("eax") lo,
out("edx") hi,
options(nomem, nostack, preserves_flags)
);
}
((hi as u64) << 32) | (lo as u64)
}
/// Writes the given raw `u64` value to this MSR.
///
/// # Safety
///
/// The caller is responsible for ensuring that writing the provided value
/// to this MSR doesn't violate memory safety.
pub unsafe fn write_raw(self, value: u64) {
tracing::trace!(wrmsr = %self, value = fmt::hex(value));
let lo = value as u32;
let hi = (value >> 32) as u32;
asm!(
"wrmsr",
in("ecx") self.num,
in("eax") lo,
in("edx") hi,
options(nostack, preserves_flags)
);
}
}
impl<V> Clone for Msr<V> {
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<V> Copy for Msr<V> {}
impl<V> PartialEq for Msr<V> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.num == other.num
}
}
impl<V> Eq for Msr<V> {}
impl<V> fmt::Debug for Msr<V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { num, name, .. } = self;
match name {
Some(name) => write!(f, "Msr({num:#x}, {name})"),
None => write!(f, "Msr({num:#x})"),
}
}
}
impl<V> fmt::Display for Msr<V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { num, name, .. } = self;
match name {
Some(name) => write!(f, "MSR {num:#x} ({name})"),
None => write!(f, "MSR {num:#x})"),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn efer_valid() {
Efer::assert_valid();
println!("{}", Efer::new())
}
#[test]
fn efer_bitoffsets() {
assert_eq!(
Efer::LONG_MODE_ENABLE.least_significant_index(),
8,
"LONG_MODE_ENABLE LSB",
);
assert_eq!(
Efer::TRANSLATION_CACHE_EXTENSION.least_significant_index(),
15,
"TCE LSB"
);
}
}