hal_x86_64/interrupt/apic/ioapic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
use super::{PinPolarity, TriggerMode};
use crate::{
cpu::FeatureNotSupported,
interrupt::IsaInterrupt,
mm::{self, page, size::Size4Kb, PhysPage, VirtPage},
};
use hal_core::PAddr;
use mycelium_util::{
bits::{bitfield, enum_from_bits},
sync::blocking::Mutex,
};
use volatile::Volatile;
#[derive(Debug)]
pub struct IoApicSet {
ioapics: alloc::vec::Vec<Mutex<IoApic>>,
isa_map: [IsaOverride; 16],
}
#[derive(Debug)]
#[must_use]
pub struct IoApic {
registers: Volatile<&'static mut MmioRegisters>,
}
bitfield! {
pub struct RedirectionEntry<u64> {
pub const VECTOR: u8;
pub const DELIVERY: DeliveryMode;
/// Destination mode.
///
/// Physical (0) or logical (1). If this is physical mode, then bits
/// 56-59 should contain an APIC ID. If this is logical mode, then those
/// bits contain a set of processors.
pub const DEST_MODE: DestinationMode;
/// Set if this interrupt is going to be sent, but the APIC is busy. Read only.
pub const QUEUED: bool;
pub const POLARITY: PinPolarity;
/// Remote IRR.
///
/// Used for level triggered interrupts only to show if a local APIC has
/// received the interrupt (= 1), or has sent an EOI (= 0). Read only.
pub const REMOTE_IRR: bool;
pub const TRIGGER: TriggerMode;
pub const MASKED: bool;
const _RESERVED = 39;
/// Destination field.
///
/// If the destination mode bit was clear, then the
/// lower 4 bits contain the bit APIC ID to sent the interrupt to. If
/// the bit was set, the upper 4 bits also contain a set of processors.
/// (See below)
pub const DESTINATION: u8;
}
}
enum_from_bits! {
#[derive(Debug, PartialEq, Eq)]
pub enum DestinationMode<u8> {
Physical = 0,
Logical = 1,
}
}
enum_from_bits! {
#[derive(Debug, PartialEq, Eq)]
pub enum DeliveryMode<u8> {
/// Normal interrupt delivery.
Normal = 0b000,
/// Lowest priority.
LowPriority = 0b001,
/// System Management Interrupt (SMI).
SystemManagement = 0b010,
/// Non-Maskable Interrupt (NMI).
NonMaskable = 0b100,
/// "INIT" (what does this mean? i don't know!)
Init = 0b101,
/// External interrupt.
External = 0b111,
}
}
/// Memory-mapped IOAPIC registers
#[derive(Copy, Clone, Debug)]
#[repr(C)]
struct MmioRegisters {
/// Selects the address to read/write from
address: u32,
_pad: [u32; 3],
/// The data to read/write
data: u32,
}
#[derive(Copy, Clone, Debug)]
struct IsaOverride {
apic: u8,
vec: u8,
}
// === impl IoApicSet ===
impl IoApicSet {
pub fn new(
madt: &acpi::platform::interrupt::Apic,
frame_alloc: &impl hal_core::mem::page::Alloc<mm::size::Size4Kb>,
pagectrl: &mut crate::mm::PageCtrl,
isa_base: u8,
) -> Self {
// The ACPI Multiple APIC Descriptor Table (MADT) tells us where to find
// the I/O APICs, as well as information about how the ISA standard
// interrupts are routed to I/O APIC inputs on this system.
//
// See: https://wiki.osdev.org/MADT
// There may be multiple I/O APICs in the system, so we'll collect them
// all into a `Vec`. We're also going to build a table of how the ISA
// standard interrupts are mapped across those I/O APICs, so we can look
// up which one a particular interrupt lives on.
let n_ioapics = madt.io_apics.len();
tracing::trace!(?madt.io_apics, "found {n_ioapics} IO APICs", );
assert_ne!(
n_ioapics, 0,
"why would a computer have the APIC interrupt model but not \
have any IO APICs???"
);
let mut this = IoApicSet {
ioapics: alloc::vec::Vec::with_capacity(n_ioapics),
isa_map: [IsaOverride { apic: 0, vec: 0 }; 16],
};
for (n, ioapic) in madt.io_apics.iter().enumerate() {
let addr = PAddr::from_u64(ioapic.address as u64);
tracing::debug!(ioapic.paddr = ?addr, "IOAPIC {n}");
this.ioapics
.push(Mutex::new(IoApic::new(addr, pagectrl, frame_alloc)));
}
// Okay, so here's where it gets ~*weird*~.
//
// On the Platonic Ideal Normal Computer, the ISA PC interrupts would be
// mapped to I/O APIC input pins by number, so ISA IRQ 0 would go to pin
// 0 on I/O APIC 0, and so on.
//
// However, motherboard manufacturers can do whatever they like when
// routing these interrupts, so they could go to different pins,
// potentially on different I/O APICs (if the system has more than one).
// Also, some of these interrupts might have different pin polarity or
// edge/level-triggered-iness than what we might expect.
//
// Fortunately, ACPI is here to help (statements dreamed up by the
// utterly deranged).
//
// The MADT includes a list of "interrupt source overrides" that
// describe any ISA interrupts that are not mapped to I/O APIC pins in
// numeric order. Each entry in the interrupt source overrides list will
// contain:
// - an ISA IRQ number (naturally),
// - the "global system interrupt", which is NOT the IDT vector for that
// interrupt but instead the I/O APIC input pin number that the IRQ is
// routed to,
// - the polarity and trigger mode of the interrupt pin, if these are
// different from the default bus trigger mode.
//
// For each of the 16 ISA interrupt vectors, we'll configure the
// redirection entry in the appropriate I/O APIC and record which I/O
// APIC (and which pin on that I/O APIC) the interrupt is routed to. We
// do this by first checking if the MADT contains an override matching
// that ISA interrupt, using that if so, and if not, falling back to the
// ISA interrupt number.
//
// Yes, this is a big pile of nested loops. But, consider the following:
//
// - the MADT override entries can probably come in any order, if the
// motherboard firmware chooses to be maximally perverse, so we have
// to scan the whole list of them to find out if each ISA interrupt is
// overridden.
// - there are only ever 16 ISA interrupts, so the outer loop iterates
// exactly 16 times; and there can't be *more* overrides than there
// are ISA interrupts (and there's generally substantially fewer).
// similarly, if there's more than 1-8 I/O APICs, you probably have
// some kind of really weird computer and should tell me about it
// because i bet it's awesome.
// so, neither inner loop actually loops that many times.
// - finally, we only do this once on boot, so who cares?
let base_entry = RedirectionEntry::new()
.with(RedirectionEntry::DELIVERY, DeliveryMode::Normal)
.with(RedirectionEntry::REMOTE_IRR, false)
.with(RedirectionEntry::MASKED, true)
.with(RedirectionEntry::DESTINATION, 0xff);
for irq in IsaInterrupt::ALL {
// Assume the IRQ is mapped to the I/O APIC pin corresponding to
// that ISA IRQ number, and is active-high and edge-triggered.
let mut global_system_interrupt = irq as u8;
let mut polarity = PinPolarity::High;
let mut trigger = TriggerMode::Edge;
// Is there an override for this IRQ? If there is, clobber the
// assumed defaults with "whatever the override says".
if let Some(src_override) = madt
.interrupt_source_overrides
.iter()
.find(|o| o.isa_source == irq as u8)
{
// put the defaults through an extruder that maybe messes with
// them.
use acpi::platform::interrupt::{
Polarity as AcpiPolarity, TriggerMode as AcpiTriggerMode,
};
tracing::debug!(
?irq,
?src_override.global_system_interrupt,
?src_override.polarity,
?src_override.trigger_mode,
"ISA interrupt {irq:?} is overridden by MADT"
);
match src_override.polarity {
AcpiPolarity::ActiveHigh => polarity = PinPolarity::High,
AcpiPolarity::ActiveLow => polarity = PinPolarity::Low,
// TODO(eliza): if the MADT override entry says that the pin
// polarity is "same as bus", we should probably actually
// make it be the same as the bus, instead of just assuming
// that it's active high. But...just assuming that "same as
// bus" means active high seems to basically work so far...
AcpiPolarity::SameAsBus => {}
}
match src_override.trigger_mode {
AcpiTriggerMode::Edge => trigger = TriggerMode::Edge,
AcpiTriggerMode::Level => trigger = TriggerMode::Level,
// TODO(eliza): As above, when the MADT says this is "same
// as bus", we should make it be the same as the bus instead
// of going "ITS EDGE TRIGGERED LOL LMAO" which is what
// we're currently doing. But, just like above, this Seems
// To Work?
AcpiTriggerMode::SameAsBus => {}
}
global_system_interrupt = src_override.global_system_interrupt.try_into().expect(
"if this exceeds u8::MAX, what the fuck! \
that's bigger than the entire IDT...",
);
}
// Now, scan to find which I/O APIC this IRQ corresponds to. if the
// system only has one I/O APIC, this will always be 0, but we gotta
// handle systems with more than one. So, we'll this by traversing
// the list of I/O APICs, seeing if the GSI number is less than the
// max number of IRQs handled by that I/O APIC, and if it is, we'll
// stick it in there. If not, keep searching for the next one,
// subtracting the max number of interrupts handled by the I/O APIC
// we just looked at.
let mut entry_idx = global_system_interrupt;
let mut got_him = false;
'apic_scan: for (apic_idx, apic) in this.ioapics.iter_mut().enumerate() {
let apic = apic.get_mut();
let max_entries = apic.max_entries();
if entry_idx > max_entries {
entry_idx -= max_entries;
continue;
}
// Ladies and gentlemen...we got him!
got_him = true;
tracing::debug!(
?irq,
?global_system_interrupt,
?apic_idx,
?entry_idx,
"found IOAPIC for ISA interrupt"
);
let entry = base_entry
.with(RedirectionEntry::POLARITY, polarity)
.with(RedirectionEntry::TRIGGER, trigger)
.with(RedirectionEntry::VECTOR, isa_base + irq as u8);
apic.set_entry(entry_idx, entry);
this.isa_map[irq as usize] = IsaOverride {
apic: apic_idx as u8,
vec: entry_idx,
};
break 'apic_scan;
}
assert!(
got_him,
"somehow, we didn't find an I/O APIC for MADT global system \
interrupt {global_system_interrupt} (ISA IRQ {irq:?})!\n \
this probably means the MADT is corrupted somehow, or maybe \
your motherboard is just super weird? i have no idea what to \
do in this situation, so i guess i'll die."
);
}
this
}
fn for_isa_irq(&self, irq: IsaInterrupt) -> (&Mutex<IoApic>, u8) {
let isa_override = self.isa_map[irq as usize];
(&self.ioapics[isa_override.apic as usize], isa_override.vec)
}
pub fn set_isa_masked(&self, irq: IsaInterrupt, masked: bool) {
let (ioapic, vec) = self.for_isa_irq(irq);
ioapic.with_lock(|ioapic| ioapic.set_masked(vec, masked));
}
}
// === impl IoApic ===
impl IoApic {
const REDIRECTION_ENTRY_BASE: u32 = 0x10;
/// Try to construct an `IoApic`.
///
/// # Arguments
///
/// - `base_addr`: The [`PAddr`] of the I/O APIC's memory-mapped register
/// page.
/// - `pagectrl`: a [page mapper](page::Map) used to ensure that the MMIO
/// register page is mapped and writable.
/// - `frame_alloc`: a [frame allocator](page::Alloc) used to allocate page
/// frame(s) while mapping the MMIO register page.
///
/// # Returns
/// - `Some(IoApic)` if this CPU supports the APIC interrupt model.
/// - `None` if this CPU does not support APIC interrupt handling.
pub fn try_new<A>(
base_paddr: PAddr,
pagectrl: &mut impl page::Map<Size4Kb, A>,
frame_alloc: &A,
) -> Result<Self, FeatureNotSupported>
where
A: page::Alloc<Size4Kb>,
{
if !super::is_supported() {
tracing::warn!("tried to construct an IO APIC, but the CPU does not support the APIC interrupt model");
return Err(FeatureNotSupported::new("APIC interrupt model"));
}
let base = mm::kernel_vaddr_of(base_paddr);
tracing::debug!(?base, ?base_paddr, "found I/O APIC base address");
unsafe {
// ensure the I/O APIC's MMIO page is mapped and writable.
let virt = VirtPage::<Size4Kb>::containing_fixed(base);
let phys = PhysPage::<Size4Kb>::containing_fixed(base_paddr);
tracing::debug!(?virt, ?phys, "mapping I/O APIC MMIO page...");
pagectrl
.map_page(virt, phys, frame_alloc)
.set_writable(true)
.commit();
tracing::debug!("mapped I/O APIC MMIO page!");
}
let registers = unsafe { Volatile::new(&mut *base.as_ptr::<MmioRegisters>()) };
let mut ioapic = Self { registers };
tracing::info!(
addr = ?base,
id = ioapic.id(),
version = ioapic.version(),
max_entries = ioapic.max_entries(),
"I/O APIC enabled"
);
Ok(ioapic)
}
#[inline]
pub fn new<A>(addr: PAddr, pagectrl: &mut impl page::Map<Size4Kb, A>, frame_alloc: &A) -> Self
where
A: page::Alloc<Size4Kb>,
{
Self::try_new(addr, pagectrl, frame_alloc).unwrap()
}
/// Returns the IO APIC's ID.
#[must_use]
pub fn id(&mut self) -> u8 {
let val = self.read(0);
(val >> 24) as u8
}
/// Returns the IO APIC's version.
#[must_use]
pub fn version(&mut self) -> u8 {
self.read(0x1) as u8
}
/// Returns the maximum number of redirection entries.
#[must_use]
pub fn max_entries(&mut self) -> u8 {
(self.read(0x1) >> 16) as u8
}
#[must_use]
pub fn entry(&mut self, irq: u8) -> RedirectionEntry {
let register_low = self
.entry_offset(irq)
.expect("IRQ number exceeds max redirection entries");
self.entry_raw(register_low)
}
pub fn set_entry(&mut self, irq: u8, entry: RedirectionEntry) {
tracing::debug!(irq, ?entry, "setting IOAPIC redirection entry");
let register_low = self
.entry_offset(irq)
.expect("IRQ number exceeds max redirection entries");
let bits = entry.bits();
let low = bits as u32;
let high = (bits >> 32) as u32;
self.write(register_low, low);
self.write(register_low + 1, high);
}
/// Convenience function to mask/unmask an IRQ.
pub fn set_masked(&mut self, irq: u8, masked: bool) {
tracing::debug!(irq, masked, "IoApic::set_masked");
self.update_entry(irq, |entry| entry.with(RedirectionEntry::MASKED, masked))
}
pub fn update_entry(
&mut self,
irq: u8,
update: impl FnOnce(RedirectionEntry) -> RedirectionEntry,
) {
let register_low = self
.entry_offset(irq)
.expect("IRQ number exceeds max redirection entries");
let entry = self.entry_raw(register_low);
let new_entry = update(entry);
self.set_entry_raw(register_low, new_entry);
}
fn entry_offset(&mut self, irq: u8) -> Option<u32> {
let max_entries = self.max_entries();
if irq > max_entries {
tracing::warn!("tried to access redirection entry {irq}, but the IO APIC only supports supports up to {max_entries}");
return None;
}
Some(Self::REDIRECTION_ENTRY_BASE + irq as u32 * 2)
}
#[inline]
fn entry_raw(&mut self, register_low: u32) -> RedirectionEntry {
let low = self.read(register_low);
let high = self.read(register_low + 1);
RedirectionEntry::from_bits((high as u64) << 32 | low as u64)
}
#[inline]
fn set_entry_raw(&mut self, register_low: u32, entry: RedirectionEntry) {
let bits = entry.bits();
let low = bits as u32;
let high = (bits >> 32) as u32;
self.write(register_low, low);
self.write(register_low + 1, high);
}
#[must_use]
fn read(&mut self, offset: u32) -> u32 {
self.set_offset(offset);
self.registers.map_mut(|ioapic| &mut ioapic.data).read()
}
fn write(&mut self, offset: u32, value: u32) {
self.set_offset(offset);
self.registers
.map_mut(|ioapic| &mut ioapic.data)
.write(value)
}
fn set_offset(&mut self, offset: u32) {
assert!(offset <= 0xff, "invalid IOAPIC register offset {offset:#x}",);
self.registers
.map_mut(|ioapic| &mut ioapic.address)
.write(offset);
}
}
// === impl DeliveryMode ===
impl Default for DeliveryMode {
fn default() -> Self {
Self::Normal
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn redirection_entry_is_valid() {
RedirectionEntry::assert_valid();
let entry = RedirectionEntry::new()
.with(RedirectionEntry::DELIVERY, DeliveryMode::Normal)
.with(RedirectionEntry::POLARITY, PinPolarity::High)
.with(RedirectionEntry::TRIGGER, TriggerMode::Edge)
.with(RedirectionEntry::MASKED, true)
.with(RedirectionEntry::DESTINATION, 0xff)
.with(RedirectionEntry::VECTOR, 0x30);
println!("{entry}");
}
#[test]
fn redirection_entry_offsets() {
assert_eq!(
RedirectionEntry::DELIVERY.least_significant_index(),
8,
"delivery"
);
assert_eq!(
RedirectionEntry::DEST_MODE.least_significant_index(),
11,
"destination mode"
);
assert_eq!(
RedirectionEntry::QUEUED.least_significant_index(),
12,
"queued"
);
assert_eq!(
RedirectionEntry::POLARITY.least_significant_index(),
13,
"pin polarity"
);
assert_eq!(
RedirectionEntry::REMOTE_IRR.least_significant_index(),
14,
"remote IRR"
);
assert_eq!(
RedirectionEntry::TRIGGER.least_significant_index(),
15,
"trigger mode"
);
assert_eq!(
RedirectionEntry::MASKED.least_significant_index(),
16,
"masked"
);
assert_eq!(
RedirectionEntry::DESTINATION.least_significant_index(),
56,
"destination field"
);
}
#[test]
fn offsetof() {
let mmregs = MmioRegisters {
address: 0,
_pad: [0, 0, 0],
data: 0,
};
let addrof = core::ptr::addr_of!(mmregs.data);
assert_eq!(
addrof as *const () as usize,
(&mmregs as *const _ as usize) + 0x10
)
}
}