maitake/time/timer/
wheel.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
use super::{sleep, Ticks};
use crate::loom::sync::atomic::Ordering::*;
use cordyceps::List;
use core::{pin::Pin, ptr, task::Poll};
use mycelium_util::fmt;

#[cfg(all(test, not(loom)))]
mod tests;

#[derive(Debug)]
pub(in crate::time) struct Core {
    /// The current "now"
    now: Ticks,

    /// The actual timer wheels.
    wheels: [Wheel; Self::WHEELS],
}

/// _The Wheel of Time_, by Robert Jordan
struct Wheel {
    /// A bitmap of the slots that are occupied.
    ///
    /// See <https://lwn.net/Articles/646056/> for details on
    /// this strategy.
    occupied_slots: u64,

    /// This wheel's level.
    level: usize,

    /// The number of ticks represented by a single slot in this wheel.
    ticks_per_slot: Ticks,

    /// The number of ticks represented by this entire wheel.
    ticks_per_wheel: Ticks,

    /// A bitmask for masking out all lower wheels' indices from a `now` timestamp.
    wheel_mask: u64,

    slots: SlotArray,
}

#[derive(Copy, Clone, Debug)]
pub(super) struct Deadline {
    pub(super) ticks: Ticks,
    slot: usize,
    wheel: usize,
}

/// In loom mode, the slot arrays are apparently a bit too big to pass around
/// (since loom's `UnsafeCell`s and atomics are larger than "real" ones), and we
/// apparently segfault when trying to construct a timer wheel. Therefore, it's
/// necessary to box the slot array when running under loom in order to reduce
/// the stack size of the timer wheel.
#[cfg(loom)]
type SlotArray = alloc::boxed::Box<[List<sleep::Entry>; Wheel::SLOTS]>;

#[cfg(not(loom))]
type SlotArray = [List<sleep::Entry>; Wheel::SLOTS];

// === impl Core ===

impl Core {
    const WHEELS: usize = Wheel::BITS;

    pub(super) const MAX_SLEEP_TICKS: u64 = (1 << (Wheel::BITS * Self::WHEELS)) - 1;

    loom_const_fn! {
        pub(super) fn new() -> Self {
            // Initialize the wheels.
            // XXX(eliza): we would have to do this extremely gross thing if we
            // wanted to support a variable number of wheels, because const fn...
            /*
            // Used as an initializer when constructing a new `Core`.
            const NEW_WHEEL: Wheel = Wheel::empty();

            let mut wheels = [NEW_WHEEL; Self::WHEELS];n
            let mut level = 0;
            while level < Self::WHEELS {
                wheels[level].level = level;
                wheels[level].ticks_per_slot = wheel::ticks_per_slot(level);
                level += 1;
            }
            */
            Self {
                now: 0,
                wheels: [
                    Wheel::new(0),
                    Wheel::new(1),
                    Wheel::new(2),
                    Wheel::new(3),
                    Wheel::new(4),
                    Wheel::new(5),
                ],
            }
        }
    }

    #[inline(never)]
    pub(super) fn turn_to(&mut self, now: Ticks) -> (usize, Option<Deadline>) {
        let mut fired = 0;

        // sleeps that need to be rescheduled on lower-level wheels need to be
        // processed after we have finished turning the wheel, to avoid looping
        // infinitely.
        let mut pending_reschedule = List::<sleep::Entry>::new();

        // we will stop looping if the next deadline is after `now`, but we
        // still need to be able to return it.
        let mut next_deadline = self.next_deadline();
        while let Some(deadline) = next_deadline {
            if deadline.ticks > now {
                break;
            }

            let mut fired_this_turn = 0;
            let entries = self.wheels[deadline.wheel].take(deadline.slot);
            debug!(
                now = self.now,
                deadline.ticks,
                entries = entries.len(),
                "turning wheel to"
            );

            for entry in entries {
                let entry_deadline = unsafe { entry.as_ref().deadline };

                if test_dbg!(entry_deadline) > test_dbg!(now) {
                    // this timer was on the top-level wheel and needs to be
                    // rescheduled on a lower-level wheel, rather than firing now.
                    debug_assert_ne!(
                        deadline.wheel, 0,
                        "if a timer is being rescheduled, it must not have been on the lowest-level wheel"
                    );
                    // this timer will need to be rescheduled.
                    pending_reschedule.push_front(entry);
                } else {
                    // otherwise, fire the timer.
                    unsafe {
                        fired_this_turn += 1;
                        entry.as_ref().fire();
                    }
                }
            }

            trace!(at = self.now, firing = fired_this_turn, "firing timers");

            self.now = deadline.ticks;
            fired += fired_this_turn;

            next_deadline = self.next_deadline();
        }

        self.now = now;

        // reschedule pending sleeps.

        // If we need to reschedule something, we may need to recalculate the next deadline
        let any = !pending_reschedule.is_empty();

        if any || fired > 0 {
            debug!(
                now = self.now,
                fired,
                rescheduled = pending_reschedule.len(),
                ?next_deadline,
                "the Wheel of Time has turned"
            );
        }

        for entry in pending_reschedule {
            let deadline = unsafe { entry.as_ref().deadline };
            debug_assert!(deadline > self.now);
            debug_assert_ne!(deadline, 0);
            self.insert_sleep_at(deadline, entry)
        }

        // Yup, we rescheduled something. Recalculate the next deadline in case one of those
        // was sooner than the last calculated deadline
        if any {
            next_deadline = self.next_deadline();
        }

        (fired, next_deadline)
    }

    pub(super) fn cancel_sleep(&mut self, sleep: Pin<&mut sleep::Entry>) {
        let deadline = sleep.deadline;
        trace!(
            sleep.addr = ?format_args!("{sleep:p}"),
            sleep.deadline = deadline,
            now = self.now,
            "canceling sleep"
        );
        let wheel = self.wheel_index(deadline);
        self.wheels[wheel].remove(deadline, sleep);
    }

    pub(super) fn register_sleep(&mut self, ptr: ptr::NonNull<sleep::Entry>) -> Poll<()> {
        let deadline = {
            let sleep = unsafe { ptr.as_ref() };

            trace!(
                sleep.addr = ?ptr,
                sleep.ticks,
                sleep.deadline,
                now = self.now,
                "registering sleep"
            );

            if sleep.deadline <= self.now {
                trace!("sleep already completed, firing immediately");
                sleep.fire();
                return Poll::Ready(());
            }

            let _did_link = sleep.linked.compare_exchange(false, true, AcqRel, Acquire);
            debug_assert!(
                _did_link.is_ok(),
                "tried to register a sleep that was already registered"
            );
            sleep.deadline
        };

        self.insert_sleep_at(deadline, ptr);
        Poll::Pending
    }

    fn insert_sleep_at(&mut self, deadline: Ticks, sleep: ptr::NonNull<sleep::Entry>) {
        let wheel = self.wheel_index(deadline);
        trace!(wheel, sleep.deadline = deadline, sleep.addr = ?sleep, "inserting sleep");
        self.wheels[wheel].insert(deadline, sleep);
    }

    /// Returns the deadline and location of the next firing timer in the wheel.
    #[inline]
    fn next_deadline(&self) -> Option<Deadline> {
        self.wheels.iter().find_map(|wheel| {
            let next_deadline = wheel.next_deadline(self.now)?;
            test_trace!(
                now = self.now,
                next_deadline.ticks,
                next_deadline.wheel,
                next_deadline.slot,
            );
            Some(next_deadline)
        })
    }

    #[inline]
    fn wheel_index(&self, ticks: Ticks) -> usize {
        wheel_index(self.now, ticks)
    }
}

fn wheel_index(now: Ticks, ticks: Ticks) -> usize {
    const WHEEL_MASK: u64 = (1 << Wheel::BITS) - 1;

    // mask out the bits representing the index in the wheel
    let mut wheel_indices = now ^ ticks | WHEEL_MASK;

    // put sleeps over the max duration in the top level wheel
    if wheel_indices >= Core::MAX_SLEEP_TICKS {
        wheel_indices = Core::MAX_SLEEP_TICKS - 1;
    }

    let zeros = wheel_indices.leading_zeros();
    let rest = u64::BITS - 1 - zeros;

    rest as usize / Core::WHEELS
}

impl Wheel {
    /// The number of slots per timer wheel is fixed at 64 slots.
    ///
    /// This is because we can use a 64-bit bitmap for each wheel to store which
    /// slots are occupied.
    const SLOTS: usize = 64;
    const BITS: usize = Self::SLOTS.trailing_zeros() as usize;
    loom_const_fn! {
        fn new(level: usize) -> Self {
            // linked list const initializer
            const NEW_LIST: List<sleep::Entry> = List::new();

            // how many ticks does a single slot represent in a wheel of this level?
            let ticks_per_slot = Self::SLOTS.pow(level as u32) as Ticks;
            let ticks_per_wheel = ticks_per_slot * Self::SLOTS as u64;

            debug_assert!(ticks_per_slot.is_power_of_two());
            debug_assert!(ticks_per_wheel.is_power_of_two());

            // because `ticks_per_wheel` is a power of two, we can calculate a
            // bitmask for masking out the indices in all lower wheels from a `now`
            // timestamp.
            let wheel_mask = !(ticks_per_wheel - 1);
            let slots = [NEW_LIST; Self::SLOTS];
            #[cfg(loom)]
            let slots = alloc::boxed::Box::new(slots);

            Self {
                level,
                ticks_per_slot,
                ticks_per_wheel,
                wheel_mask,
                occupied_slots: 0,
                slots,
            }
        }
    }

    /// Insert a sleep entry into this wheel.
    fn insert(&mut self, deadline: Ticks, sleep: ptr::NonNull<sleep::Entry>) {
        let slot = self.slot_index(deadline);
        trace!(
            wheel = self.level,
            sleep.addr = ?fmt::ptr(sleep),
            sleep.deadline = deadline,
            sleep.slot = slot,
            "Wheel::insert",
        );

        // insert the sleep entry into the appropriate linked list.
        self.slots[slot].push_front(sleep);
        // toggle the occupied bit for that slot.
        self.fill_slot(slot);
    }

    /// Remove a sleep entry from this wheel.
    fn remove(&mut self, deadline: Ticks, sleep: Pin<&mut sleep::Entry>) {
        let slot = self.slot_index(deadline);
        unsafe {
            // safety: we will not use the `NonNull` to violate pinning
            // invariants; it's used only to insert the sleep into the intrusive
            // list. It's safe to remove the sleep from the linked list because
            // we know it's in this list (provided the rest of the timer wheel
            // is like...working...)
            let ptr = ptr::NonNull::from(Pin::into_inner_unchecked(sleep));
            trace!(
                wheel = self.level,
                sleep.addr = ?fmt::ptr(ptr),
                sleep.deadline = deadline,
                sleep.slot = slot,
                "Wheel::remove",
            );

            if let Some(sleep) = self.slots[slot].remove(ptr) {
                let _did_unlink = sleep
                    .as_ref()
                    .linked
                    .compare_exchange(true, false, AcqRel, Acquire);
                debug_assert!(
                    _did_unlink.is_ok(),
                    "removed a sleep whose linked bit was already unset, this is potentially real bad"
                );
            }
        };

        if self.slots[slot].is_empty() {
            // if that was the only sleep in that slot's linked list, clear the
            // corresponding occupied bit.
            self.clear_slot(slot);
        }
    }

    fn take(&mut self, slot: usize) -> List<sleep::Entry> {
        debug_assert!(
            self.occupied_slots & (1 << slot) != 0,
            "taking an unoccupied slot!"
        );
        let list = self.slots[slot].split_off(0);
        debug_assert!(
            !list.is_empty(),
            "if a slot is occupied, its list must not be empty"
        );
        self.clear_slot(slot);
        list
    }

    fn next_deadline(&self, now: u64) -> Option<Deadline> {
        let distance = self.next_slot_distance(now)?;

        let slot = distance % Self::SLOTS;
        // does the next slot wrap this wheel around from the now slot?
        let skipped = distance.saturating_sub(Self::SLOTS);

        debug_assert!(distance < Self::SLOTS * 2);
        debug_assert!(
            skipped == 0 || self.level == Core::WHEELS - 1,
            "if the next expiring slot wraps around, we must be on the top level wheel\
            \n    dist: {distance}\
            \n    slot: {slot}\
            \n skipped: {skipped}\
            \n   level: {}",
            self.level,
        );

        // when did the current rotation of this wheel begin? since all wheels
        // represent a power-of-two number of ticks, we can determine the
        // beginning of this rotation by masking out the bits for all lower wheels.
        let rotation_start = now & self.wheel_mask;
        // the next deadline is the start of the current rotation, plus the next
        // slot's value.
        let ticks = {
            let skipped_ticks = skipped as u64 * self.ticks_per_wheel;
            rotation_start + (slot as u64 * self.ticks_per_slot) + skipped_ticks
        };

        test_trace!(
            now,
            wheel = self.level,
            rotation_start,
            slot,
            skipped,
            ticks,
            "Wheel::next_deadline"
        );

        let deadline = Deadline {
            ticks,
            slot,
            wheel: self.level,
        };

        Some(deadline)
    }

    /// Returns the slot index of the next firing timer.
    fn next_slot_distance(&self, now: Ticks) -> Option<usize> {
        if self.occupied_slots == 0 {
            return None;
        }

        // which slot is indexed by the `now` timestamp?
        let now_slot = (now / self.ticks_per_slot) as u32 % Self::SLOTS as u32;
        let next_dist = next_set_bit(self.occupied_slots, now_slot)?;

        test_trace!(
            now_slot,
            next_dist,
            occupied = ?fmt::bin(self.occupied_slots),
            "next_slot_distance"
        );
        Some(next_dist)
    }

    fn clear_slot(&mut self, slot_index: usize) {
        debug_assert!(slot_index < Self::SLOTS);
        self.occupied_slots &= !(1 << slot_index);
    }

    fn fill_slot(&mut self, slot_index: usize) {
        debug_assert!(slot_index < Self::SLOTS);
        self.occupied_slots |= 1 << slot_index;
    }

    /// Given a duration, returns the slot into which an entry for that duratio
    /// would be inserted.
    const fn slot_index(&self, ticks: Ticks) -> usize {
        let shift = self.level * Self::BITS;
        ((ticks >> shift) % Self::SLOTS as u64) as usize
    }
}

impl fmt::Debug for Wheel {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let Self {
            level,
            ticks_per_slot,
            ticks_per_wheel,
            wheel_mask,
            occupied_slots,
            slots: _,
        } = self;
        f.debug_struct("Wheel")
            .field("level", level)
            .field("ticks_per_slot", ticks_per_slot)
            .field("ticks_per_wheel", ticks_per_wheel)
            .field("wheel_mask", &fmt::bin(wheel_mask))
            .field("occupied_slots", &fmt::bin(occupied_slots))
            .field("slots", &format_args!("[Slot; {}]", Self::SLOTS))
            .finish()
    }
}

/// Finds the index of the next set bit in `bitmap` after the `offset`th` bit.
/// If the `offset`th bit is set, returns `offset`.
///
/// Based on
/// <https://github.com/torvalds/linux/blob/d0e60d46bc03252b8d4ffaaaa0b371970ac16cda/include/linux/find.h#L21-L45>
fn next_set_bit(bitmap: u64, offset: u32) -> Option<usize> {
    // XXX(eliza): there's probably a way to implement this with less
    // branches via some kind of bit magic...
    debug_assert!(offset < 64, "offset: {offset}");
    if bitmap == 0 {
        return None;
    }
    let shifted = bitmap >> offset;
    let zeros = if shifted == 0 {
        bitmap.rotate_right(offset).trailing_zeros()
    } else {
        shifted.trailing_zeros()
    };
    Some(zeros as usize + offset as usize)
}