1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
use core::{
alloc::{GlobalAlloc, Layout},
cmp, mem, ptr,
};
use hal_core::{
mem::{
page::{self, AllocErr, PageRange, Size},
Region, RegionKind,
},
Address, PAddr, VAddr,
};
use mycelium_util::fmt;
use mycelium_util::intrusive::{list, Linked, List};
use mycelium_util::math::Logarithm;
use mycelium_util::sync::{
atomic::{AtomicUsize, Ordering::*},
blocking::Mutex,
};
#[derive(Debug)]
pub struct Alloc<const FREE_LISTS: usize> {
/// Minimum allocateable page size in bytes.
///
/// Free blocks on `free_lists[0]` are one page of this size each. For each
/// index higher in the array of free lists, the blocks on that free list
/// are 2x as large.
min_size: usize,
base_vaddr: AtomicUsize,
vm_offset: AtomicUsize,
/// Cache this so we don't have to re-evaluate it.
min_size_log2: usize,
/// Total size of the heap.
heap_size: AtomicUsize,
/// Currently allocated size.
allocated_size: AtomicUsize,
/// Array of free lists by "order". The order of an block is the number
/// of times the minimum page size must be doubled to reach that block's
/// size.
free_lists: [Mutex<List<Free>>; FREE_LISTS],
}
type Result<T> = core::result::Result<T, AllocErr>;
pub struct Free {
magic: usize,
links: list::Links<Self>,
meta: Region,
}
// ==== impl Alloc ===
impl<const FREE_LISTS: usize> Alloc<FREE_LISTS> {
#[cfg(not(loom))]
pub const fn new(mut min_size: usize) -> Self {
// clippy doesn't like interior mutable items in `const`s, because
// mutating an instance of the `const` value will not mutate the const.
// that is the *correct* behavior here, as the const is used just as an
// array initializer; every time it's referenced, it *should* produce a
// new value. therefore, this warning is incorrect in this case.
//
// see https://github.com/rust-lang/rust-clippy/issues/7665
#[allow(clippy::declare_interior_mutable_const)]
const ONE_FREE_LIST: Mutex<List<Free>> = Mutex::new(List::new());
// ensure we don't split memory into regions too small to fit the free
// block header in them.
let free_block_size = mem::size_of::<Free>();
if min_size < free_block_size {
min_size = free_block_size;
}
// round the minimum block size up to the next power of two, if it isn't
// a power of two (`size_of::<Free>` is *probably* 48 bytes on 64-bit
// architectures...)
min_size = min_size.next_power_of_two();
Self {
min_size,
base_vaddr: AtomicUsize::new(usize::MAX),
vm_offset: AtomicUsize::new(0),
min_size_log2: mycelium_util::math::usize_const_log2_ceil(min_size),
heap_size: AtomicUsize::new(0),
allocated_size: AtomicUsize::new(0),
free_lists: [ONE_FREE_LIST; FREE_LISTS],
}
}
pub fn set_vm_offset(&self, offset: VAddr) {
self.vm_offset
.compare_exchange(0, offset.as_usize(), AcqRel, Acquire)
.expect("dont do this twice lol");
}
/// Returns the minimum allocatable size, in bytes.
pub fn min_size(&self) -> usize {
self.min_size
}
/// Returns the total size of the allocator (allocated and free), in bytes.
pub fn total_size(&self) -> usize {
self.heap_size.load(Acquire)
}
/// Returns the currently allocated size in bytes.
pub fn allocated_size(&self) -> usize {
self.allocated_size.load(Acquire)
}
/// Returns the base virtual memory offset.
// TODO(eliza): nicer way to configure this?
fn offset(&self) -> usize {
let addr = self.vm_offset.load(Relaxed);
debug_assert_ne!(addr, 0, "you didn't initialize the heap yet dipshit");
addr
}
/// Returns the size of the allocation for a given order
fn size_for_order(&self, order: usize) -> usize {
1 << (self.min_size_log2 + order)
}
/// Returns the actual size of the block that must be allocated for an
/// allocation of `len` pages of `page_size`.
fn size_for(&self, layout: Layout) -> Option<usize> {
let mut size = layout.size();
let align = layout.align();
size = cmp::max(size, align);
// Round up to the heap's minimum allocateable size.
if size < self.min_size {
tracing::trace!(
size,
min_size = self.min_size,
layout.size = layout.size(),
layout.align = layout.align(),
"size is less than the minimum page size; rounding up"
);
size = self.min_size;
}
// Is the size a power of two?
if !size.is_power_of_two() {
let next_pow2 = size.next_power_of_two();
tracing::trace!(
layout.size = size,
next_pow2,
"size is not a power of two, rounding up..."
);
size = next_pow2;
}
// debug_assert!(
// size.is_power_of_two(),
// "somebody constructed a bad layout! don't do that!"
// );
// Is there enough room to meet this allocation request?
let available = self.heap_size.load(Acquire);
if size > available {
tracing::error!(
size,
available,
layout.size = layout.size(),
layout.align = layout.align(),
"out of memory!"
);
return None;
}
Some(size)
}
/// Returns the order of the block that would be allocated for a range of
/// `len` pages of size `size`.
fn order_for(&self, layout: Layout) -> Option<usize> {
self.size_for(layout).map(|size| self.order_for_size(size))
}
/// Returns the order of a block of `size` bytes.
fn order_for_size(&self, size: usize) -> usize {
size.log2_ceil() - self.min_size_log2
}
}
impl<const FREE_LISTS: usize> Alloc<FREE_LISTS> {
pub fn dump_free_lists(&self) {
for (order, list) in self.free_lists.as_ref().iter().enumerate() {
let _span =
tracing::debug_span!("free_list", order, size = self.size_for_order(order),)
.entered();
list.try_with_lock(|list| {
for entry in list.iter() {
tracing::debug!("entry={entry:?}");
}
})
.unwrap_or_else(|| tracing::debug!("<THIS IS THE ONE WHERE THE PANIC HAPPENED LOL>"))
}
}
/// Adds a memory region to the heap from which pages may be allocated.
#[tracing::instrument(skip(self), level = "debug")]
pub unsafe fn add_region(&self, region: Region) -> core::result::Result<(), ()> {
// Is the region in use?
if region.kind() != RegionKind::FREE {
tracing::warn!(?region, "cannot add to page allocator, region is not free");
return Err(());
}
let mut next_region = Some(region);
while let Some(mut region) = next_region.take() {
let size = region.size();
let base = region.base_addr();
let _span = tracing::debug_span!("adding_region", size, ?base).entered();
// Is the region aligned on the heap's minimum page size? If not, we
// need to align it.
if !base.is_aligned(self.min_size) {
let new_base = base.align_up(self.min_size);
tracing::trace!(region.new_base = ?new_base, "base address not aligned!");
region = Region::new(new_base, region.size(), RegionKind::FREE);
}
// Is the size of the region a power of two? The buddy block algorithm
// requires each free block to be a power of two.
if !size.is_power_of_two() {
// If the region is not a power of two, split it down to the nearest
// power of two.
let prev_power_of_two = prev_power_of_two(size);
tracing::debug!(prev_power_of_two, "not a power of two!");
let region2 = region.split_back(prev_power_of_two).unwrap();
// If the region we split off is larger than the minimum page size,
// we can try to add it as well.
if region2.size() >= self.min_size {
tracing::debug!("adding split-off region");
next_region = Some(region2);
} else {
// Otherwise, we can't use it --- we'll have to leak it.
// TODO(eliza):
// figure out a nice way to use stuff that won't fit for "some
// other purpose"?
// NOTE:
// in practice these might just be the two "bonus bytes" that
// the free regions in our memory map have for some kind of
// reason (on x84).
// TODO(eliza):
// figure out why free regions in the memory map are all
// misaligned by two bytes.
tracing::debug!(
region = ?region2,
min_size = self.min_size,
"leaking a region smaller than min page size"
);
}
}
// Update the base virtual address of the heap.
let region_vaddr = region.base_addr().as_usize() + self.offset();
self.base_vaddr.fetch_min(region_vaddr, AcqRel);
// ...and actually add the block to a free list.
let block = Free::new(region, self.offset());
unsafe { self.push_block(block) };
}
Ok(())
}
unsafe fn alloc_inner(&self, layout: Layout) -> Option<ptr::NonNull<Free>> {
// This is the minimum order necessary for the requested allocation ---
// the first free list we'll check.
let order = self.order_for(layout)?;
tracing::trace!(?order);
// Try each free list, starting at the minimum necessary order.
for (idx, free_list) in self.free_lists.as_ref()[order..].iter().enumerate() {
tracing::trace!(curr_order = idx + order);
// Is there an available block on this free list?
let allocated = free_list.with_lock(|free_list| {
if let Some(mut block) = free_list.pop_back() {
let block = unsafe { block.as_mut() };
tracing::trace!(?block, ?free_list, "found");
// Unless this is the free list on which we'd expect to find a
// block of the requested size (the first free list we checked),
// the block is larger than the requested allocation. In that
// case, we'll need to split it down and push the remainder onto
// the appropriate free lists.
if idx > 0 {
let curr_order = idx + order;
tracing::trace!(?curr_order, ?order, "split down");
self.split_down(block, curr_order, order);
}
// Change the block's magic to indicate that it is allocated, so
// that we can avoid checking the free list if we try to merge
// it before the first word is written to.
block.make_busy();
tracing::trace!(?block, "made busy");
self.allocated_size.fetch_add(block.size(), Release);
Some(block.into())
} else {
None
}
});
if let Some(block) = allocated {
return Some(block);
}
}
None
}
unsafe fn dealloc_inner(&self, paddr: PAddr, layout: Layout) -> Result<()> {
// Find the order of the free list on which the freed range belongs.
let min_order = self.order_for(layout);
tracing::trace!(?min_order);
let min_order = min_order.ok_or_else(AllocErr::oom)?;
let Some(size) = self.size_for(layout) else {
// XXX(eliza): is it better to just leak it?
panic!(
"couldn't determine the correct layout for an allocation \
we previously allocated successfully, what the actual fuck!\n \
addr={:?}; layout={:?}; min_order={}",
paddr, layout, min_order,
)
};
// Construct a new free block.
let mut block =
unsafe { Free::new(Region::new(paddr, size, RegionKind::FREE), self.offset()) };
// Starting at the minimum order on which the freed range will fit
for (idx, free_list) in self.free_lists.as_ref()[min_order..].iter().enumerate() {
let curr_order = idx + min_order;
let done = free_list.with_lock(|free_list| {
// Is there a free buddy block at this order?
if let Some(mut buddy) = unsafe { self.take_buddy(block, curr_order, free_list) } {
// Okay, merge the blocks, and try the next order!
if buddy < block {
mem::swap(&mut block, &mut buddy);
}
unsafe {
block.as_mut().merge(buddy.as_mut());
}
tracing::trace!(?buddy, ?block, "merged with buddy");
// Keep merging!
false
} else {
// Okay, we can't keep merging, so push the block on the current
// free list.
free_list.push_front(block);
tracing::trace!("deallocated block");
self.allocated_size.fetch_sub(size, Release);
true
}
});
if done {
return Ok(());
}
}
unreachable!("we will always iterate over at least one free list");
}
#[tracing::instrument(skip(self), level = "trace")]
unsafe fn push_block(&self, block: ptr::NonNull<Free>) {
let block_size = block.as_ref().size();
let order = self.order_for_size(block_size);
tracing::trace!(block = ?block.as_ref(), block.order = order);
let free_lists = self.free_lists.as_ref();
if order > free_lists.len() {
todo!("(eliza): choppity chop chop down the block!");
}
free_lists[order].with_lock(|list| list.push_front(block));
let mut sz = self.heap_size.load(Acquire);
while let Err(actual) =
// TODO(eliza): if this overflows that's bad news lol...
self.heap_size
.compare_exchange_weak(sz, sz + block_size, AcqRel, Acquire)
{
sz = actual;
}
}
/// Removes `block`'s buddy from the free list and returns it, if it is free
///
/// The "buddy" of a block is the block from which that block was split off
/// to reach its current order, and therefore the block with which it could
/// be merged to reach the target order.
unsafe fn take_buddy(
&self,
block: ptr::NonNull<Free>,
order: usize,
free_list: &mut List<Free>,
) -> Option<ptr::NonNull<Free>> {
let size = self.size_for_order(order);
let base = self.base_vaddr.load(Relaxed);
if base == usize::MAX {
// This is a bug.
tracing::error!("cannot find buddy block; heap not initialized!");
return None;
}
tracing::trace!(
heap.base = fmt::hex(base),
block.addr = ?block,
block.order = order,
block.size = size,
"calculating buddy"
);
// Find the relative offset of `block` from the base of the heap.
let rel_offset = block.as_ptr() as usize - base;
let buddy_offset = rel_offset ^ (1 << order);
let buddy = (base + buddy_offset) as *mut Free;
tracing::trace!(
block.rel_offset = fmt::hex(rel_offset),
buddy.offset = fmt::hex(buddy_offset),
buddy.addr = ?buddy,
);
if ptr::eq(buddy as *const _, block.as_ptr() as *const _) {
tracing::trace!("buddy block is the same as self");
return None;
}
let buddy = unsafe {
// Safety: we constructed this address via a usize add of two
// values we know are not 0, so this should not be null, and
// it's okay to use `new_unchecked`.
// TODO(eliza): we should probably die horribly if that add
// *does* overflow i guess...
ptr::NonNull::new_unchecked(buddy)
};
// Check if the buddy block is definitely in use before removing it from
// the free list.
//
// `is_maybe_free` returns a *hint* --- if it returns `false`, we know
// the block is in use, so we don't have to remove it from the free list.
let block = unsafe { buddy.as_ref() };
if block.is_maybe_free() {
tracing::trace!(
buddy.block = ?block,
buddy.addr = ?buddy, "trying to remove buddy..."
);
debug_assert_eq!(block.size(), size, "buddy block did not have correct size");
// Okay, now try to remove the buddy from its free list. If it's not
// free, this will return `None`.
return free_list.remove(buddy);
}
// Otherwise, the buddy block is currently in use.
None
}
/// Split a block of order `order` down to order `target_order`.
#[tracing::instrument(skip(self), level = "trace")]
fn split_down(&self, block: &mut Free, mut order: usize, target_order: usize) {
let mut size = block.size();
debug_assert_eq!(
size,
self.size_for_order(order),
"a block was a weird size for some reason"
);
let free_lists = self.free_lists.as_ref();
while order > target_order {
order -= 1;
size >>= 1;
tracing::trace!(order, target_order, size, ?block, "split at");
let new_block = block
.split_back(size, self.offset())
.expect("block too small to split!");
tracing::trace!(?block, ?new_block);
free_lists[order].with_lock(|list| list.push_front(new_block));
}
}
}
unsafe impl<S, const FREE_LISTS: usize> page::Alloc<S> for Alloc<FREE_LISTS>
where
S: Size + fmt::Display,
{
/// Allocate a range of at least `len` pages.
///
/// If `len` is not a power of two, the length is rounded up to the next
/// power of two. The returned `PageRange` struct stores the actual length
/// of the allocated page range.
///
/// # Returns
/// - `Ok(PageRange)` if a range of pages was successfully allocated
/// - `Err` if the requested range could not be satisfied by this allocator.
fn alloc_range(&self, size: S, len: usize) -> Result<PageRange<PAddr, S>> {
let span = tracing::trace_span!("alloc_range", size = size.as_usize(), len);
let _e = span.enter();
debug_assert!(
size.as_usize().is_power_of_two(),
"page size must be a power of 2; size={size}",
);
let actual_len = if len.is_power_of_two() {
len
} else {
let next = len.next_power_of_two();
tracing::debug!(
requested.len = len,
rounded.len = next,
"rounding up page range length to next power of 2"
);
next
};
let total_size = size
.as_usize()
// If the size of the page range would overflow, we *definitely*
// can't allocate that lol.
.checked_mul(actual_len)
.ok_or_else(AllocErr::oom)?;
debug_assert!(
total_size.is_power_of_two(),
"total size of page range must be a power of 2; total_size={total_size} size={size} len={actual_len}",
);
#[cfg(debug_assertions)]
let layout = Layout::from_size_align(total_size, size.as_usize())
.expect("page ranges should have valid (power of 2) size/align");
#[cfg(not(debug_assertions))]
let layout = unsafe {
// Safety: we expect all page sizes to be powers of 2.
Layout::from_size_align_unchecked(total_size, size.as_usize())
};
// Try to allocate the page range
let block = unsafe { self.alloc_inner(layout) }.ok_or_else(AllocErr::oom)?;
// Return the allocation!
let range = unsafe { block.as_ref() }.region().page_range(size);
tracing::debug!(
?range,
requested.size = size.as_usize(),
requested.len = len,
actual.len = actual_len,
"allocated"
);
range.map_err(Into::into)
}
/// Deallocate a range of pages.
///
/// # Returns
/// - `Ok(())` if a range of pages was successfully deallocated
/// - `Err` if the requested range could not be deallocated.
fn dealloc_range(&self, range: PageRange<PAddr, S>) -> Result<()> {
let page_size = range.page_size().as_usize();
let len = range.len();
let base = range.base_addr();
let span = tracing::trace_span!(
"dealloc_range",
range.base = ?base,
range.page_size = page_size,
range.len = len
);
let _e = span.enter();
let total_size = page_size
.checked_mul(len)
.expect("page range size shouldn't overflow, this is super bad news");
#[cfg(debug_assertions)]
let layout = Layout::from_size_align(total_size, page_size)
.expect("page ranges should be well-aligned");
#[cfg(not(debug_assertions))]
let layout = unsafe {
// Safety: we expect page ranges to be well-aligned.
Layout::from_size_align_unchecked(total_size, page_size)
};
unsafe {
self.dealloc_inner(base, layout)?;
}
tracing::debug!(
range.base = ?range.base_addr(),
range.page_size = range.page_size().as_usize(),
range.len = range.len(),
"deallocated"
);
Ok(())
}
}
unsafe impl<const FREE_LISTS: usize> GlobalAlloc for Alloc<FREE_LISTS> {
#[tracing::instrument(level = "trace", skip(self))]
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
self.alloc_inner(layout)
.map(ptr::NonNull::as_ptr)
.unwrap_or_else(ptr::null_mut)
.cast::<u8>()
}
#[tracing::instrument(level = "trace", skip(self))]
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
let addr = match (ptr as usize).checked_sub(self.offset()) {
Some(addr) => addr,
None => panic!(
"pointer is not to a kernel VAddr! ptr={ptr:p}; offset={:x}",
self.offset()
),
};
let addr = PAddr::from_usize(addr);
match self.dealloc_inner(addr, layout) {
Ok(_) => {}
Err(_) => panic!(
"deallocating {addr:?} with layout {layout:?} failed! this shouldn't happen!",
),
}
}
}
// ==== impl Free ====
impl Free {
const MAGIC: usize = 0xF4EE_B10C; // haha lol it spells "free block"
const MAGIC_BUSY: usize = 0xB4D_B10C;
/// # Safety
///
/// Don't construct a free list entry for a region that isn't actually free,
/// that would be, uh, bad, lol.
pub unsafe fn new(region: Region, offset: usize) -> ptr::NonNull<Free> {
tracing::trace!(?region, offset = fmt::hex(offset));
let ptr = ((region.base_addr().as_ptr::<Free>() as usize) + offset) as *mut _;
let nn = ptr::NonNull::new(ptr)
.expect("definitely don't try to free the zero page; that's evil");
ptr::write_volatile(
ptr,
Free {
magic: Self::MAGIC,
links: list::Links::default(),
meta: region,
},
);
nn
}
pub fn split_front(&mut self, size: usize, offset: usize) -> Option<ptr::NonNull<Self>> {
debug_assert_eq!(
self.magic,
Self::MAGIC,
"MY MAGIC WAS MESSED UP! self={:#?}, self.magic={:#x}",
self,
self.magic
);
let new_meta = self.meta.split_front(size)?;
let new_free = unsafe { Self::new(new_meta, offset) };
Some(new_free)
}
pub fn split_back(&mut self, size: usize, offset: usize) -> Option<ptr::NonNull<Self>> {
debug_assert_eq!(
self.magic,
Self::MAGIC,
"MY MAGIC WAS MESSED UP! self={self:#?}, self.magic={:#x}",
self.magic
);
debug_assert!(
!self.links.is_linked(),
"tried to split a block while it was on a free list!"
);
let new_meta = self.meta.split_back(size)?;
debug_assert_ne!(new_meta, self.meta);
debug_assert_eq!(new_meta.size(), size);
debug_assert_eq!(self.meta.size(), size);
tracing::trace!(?new_meta, ?self.meta, "split meta");
let new_free = unsafe { Self::new(new_meta, offset) };
debug_assert_ne!(new_free, ptr::NonNull::from(self));
Some(new_free)
}
pub fn merge(&mut self, other: &mut Self) {
debug_assert_eq!(
self.magic,
Self::MAGIC,
"MY MAGIC WAS MESSED UP! self={self:#?}, self.magic={:#x}",
self.magic
);
debug_assert_eq!(
other.magic,
Self::MAGIC,
"THEIR MAGIC WAS MESSED UP! other={other:#?}, other.magic={:#x}",
other.magic
);
assert!(
!other.links.is_linked(),
"tried to merge with a block that's already linked! other={other:?}",
);
self.meta.merge(&mut other.meta)
}
pub fn region(&self) -> Region {
self.meta.clone() // XXX(eliza): `Region` should probly be `Copy`.
}
pub fn size(&self) -> usize {
self.meta.size()
}
/// Returns `true` if the region *might* be free.
///
/// If this returns false, the region is *definitely* not free. If it
/// returns true, the region is *possibly* free, and the free list should be
/// checked.
///
/// This is intended as a hint to avoid traversing the free list for blocks
/// which are definitely in use, not as an authoritative source.
#[inline]
pub fn is_maybe_free(&self) -> bool {
self.magic == Self::MAGIC
}
pub fn make_busy(&mut self) {
self.magic = Self::MAGIC_BUSY;
}
}
unsafe impl Linked<list::Links<Self>> for Free {
type Handle = ptr::NonNull<Free>;
#[inline]
fn into_ptr(r: Self::Handle) -> ptr::NonNull<Self> {
r
}
#[inline]
unsafe fn from_ptr(ptr: ptr::NonNull<Self>) -> Self::Handle {
ptr
}
#[inline]
unsafe fn links(ptr: ptr::NonNull<Self>) -> ptr::NonNull<list::Links<Self>> {
// Safety: using `ptr::addr_of_mut!` avoids creating a temporary
// reference, which stacked borrows dislikes.
let links = ptr::addr_of_mut!((*ptr.as_ptr()).links);
// Safety: it's fine to use `new_unchecked` here; if the pointer that we
// offset to the `links` field is not null (which it shouldn't be, as we
// received it as a `NonNull`), the offset pointer should therefore also
// not be null.
ptr::NonNull::new_unchecked(links)
}
}
impl fmt::Debug for Free {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { magic, links, meta } = self;
f.debug_struct("Free")
.field("magic", &fmt::hex(magic))
.field("links", links)
.field("meta", meta)
.finish()
}
}
fn prev_power_of_two(n: usize) -> usize {
(n / 2).next_power_of_two()
}