1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
use core::{
    alloc::{GlobalAlloc, Layout},
    cmp, mem, ptr,
};
use hal_core::{
    mem::{
        page::{self, AllocErr, PageRange, Size},
        Region, RegionKind,
    },
    Address, PAddr, VAddr,
};
use mycelium_util::fmt;
use mycelium_util::intrusive::{list, Linked, List};
use mycelium_util::math::Logarithm;
use mycelium_util::sync::{
    atomic::{AtomicUsize, Ordering::*},
    spin,
};

#[derive(Debug)]
pub struct Alloc<const FREE_LISTS: usize> {
    /// Minimum allocateable page size in bytes.
    ///
    /// Free blocks on `free_lists[0]` are one page of this size each. For each
    /// index higher in the array of free lists, the blocks on that free list
    /// are 2x as large.
    min_size: usize,

    base_vaddr: AtomicUsize,
    vm_offset: AtomicUsize,

    /// Cache this so we don't have to re-evaluate it.
    min_size_log2: usize,

    /// Total size of the heap.
    heap_size: AtomicUsize,

    /// Currently allocated size.
    allocated_size: AtomicUsize,

    /// Array of free lists by "order". The order of an block is the number
    /// of times the minimum page size must be doubled to reach that block's
    /// size.
    free_lists: [spin::Mutex<List<Free>>; FREE_LISTS],
}

type Result<T> = core::result::Result<T, AllocErr>;

pub struct Free {
    magic: usize,
    links: list::Links<Self>,
    meta: Region,
}

// ==== impl Alloc ===

impl<const FREE_LISTS: usize> Alloc<FREE_LISTS> {
    #[cfg(not(loom))]
    pub const fn new(mut min_size: usize) -> Self {
        // clippy doesn't like interior mutable items in `const`s, because
        // mutating an instance of the `const` value will not mutate the const.
        // that is the *correct* behavior here, as the const is used just as an
        // array initializer; every time it's referenced, it *should* produce a
        // new value. therefore, this warning is incorrect in this case.
        //
        // see https://github.com/rust-lang/rust-clippy/issues/7665
        #[allow(clippy::declare_interior_mutable_const)]
        const ONE_FREE_LIST: spin::Mutex<List<Free>> = spin::Mutex::new(List::new());

        // ensure we don't split memory into regions too small to fit the free
        // block header in them.
        let free_block_size = mem::size_of::<Free>();
        if min_size < free_block_size {
            min_size = free_block_size;
        }
        // round the minimum block size up to the next power of two, if it isn't
        // a power of two (`size_of::<Free>` is *probably* 48 bytes on 64-bit
        // architectures...)
        min_size = min_size.next_power_of_two();
        Self {
            min_size,
            base_vaddr: AtomicUsize::new(usize::MAX),
            vm_offset: AtomicUsize::new(0),
            min_size_log2: mycelium_util::math::usize_const_log2_ceil(min_size),
            heap_size: AtomicUsize::new(0),
            allocated_size: AtomicUsize::new(0),
            free_lists: [ONE_FREE_LIST; FREE_LISTS],
        }
    }

    pub fn set_vm_offset(&self, offset: VAddr) {
        self.vm_offset
            .compare_exchange(0, offset.as_usize(), AcqRel, Acquire)
            .expect("dont do this twice lol");
    }

    /// Returns the minimum allocatable size, in bytes.
    pub fn min_size(&self) -> usize {
        self.min_size
    }

    /// Returns the total size of the allocator (allocated and free), in bytes.
    pub fn total_size(&self) -> usize {
        self.heap_size.load(Acquire)
    }

    /// Returns the currently allocated size in bytes.
    pub fn allocated_size(&self) -> usize {
        self.allocated_size.load(Acquire)
    }

    /// Returns the base virtual memory offset.
    // TODO(eliza): nicer way to configure this?
    fn offset(&self) -> usize {
        let addr = self.vm_offset.load(Relaxed);
        debug_assert_ne!(addr, 0, "you didn't initialize the heap yet dipshit");
        addr
    }

    /// Returns the size of the allocation for a given order
    fn size_for_order(&self, order: usize) -> usize {
        1 << (self.min_size_log2 + order)
    }

    /// Returns the actual size of the block that must be allocated for an
    /// allocation of `len` pages of `page_size`.
    fn size_for(&self, layout: Layout) -> Option<usize> {
        let mut size = layout.size();
        let align = layout.align();
        size = cmp::max(size, align);

        // Round up to the heap's minimum allocateable size.
        if size < self.min_size {
            tracing::trace!(
                size,
                min_size = self.min_size,
                layout.size = layout.size(),
                layout.align = layout.align(),
                "size is less than the minimum page size; rounding up"
            );
            size = self.min_size;
        }

        // Is the size a power of two?
        if !size.is_power_of_two() {
            let next_pow2 = size.next_power_of_two();
            tracing::trace!(
                layout.size = size,
                next_pow2,
                "size is not a power of two, rounding up..."
            );
            size = next_pow2;
        }
        // debug_assert!(
        //     size.is_power_of_two(),
        //     "somebody constructed a bad layout! don't do that!"
        // );

        // Is there enough room to meet this allocation request?
        let available = self.heap_size.load(Acquire);
        if size > available {
            tracing::error!(
                size,
                available,
                layout.size = layout.size(),
                layout.align = layout.align(),
                "out of memory!"
            );
            return None;
        }

        Some(size)
    }

    /// Returns the order of the block that would be allocated for a range of
    /// `len` pages of size `size`.
    fn order_for(&self, layout: Layout) -> Option<usize> {
        self.size_for(layout).map(|size| self.order_for_size(size))
    }

    /// Returns the order of a block of `size` bytes.
    fn order_for_size(&self, size: usize) -> usize {
        size.log2_ceil() - self.min_size_log2
    }
}

impl<const FREE_LISTS: usize> Alloc<FREE_LISTS> {
    pub fn dump_free_lists(&self) {
        for (order, list) in self.free_lists.as_ref().iter().enumerate() {
            let _span =
                tracing::debug_span!("free_list", order, size = self.size_for_order(order),)
                    .entered();
            match list.try_lock() {
                Some(list) => {
                    for entry in list.iter() {
                        tracing::debug!("entry={entry:?}");
                    }
                }
                None => {
                    tracing::debug!("<THIS IS THE ONE WHERE THE PANIC HAPPENED LOL>");
                }
            }
        }
    }

    /// Adds a memory region to the heap from which pages may be allocated.
    #[tracing::instrument(skip(self), level = "debug")]
    pub unsafe fn add_region(&self, region: Region) -> core::result::Result<(), ()> {
        // Is the region in use?
        if region.kind() != RegionKind::FREE {
            tracing::warn!(?region, "cannot add to page allocator, region is not free");
            return Err(());
        }

        let mut next_region = Some(region);
        while let Some(mut region) = next_region.take() {
            let size = region.size();
            let base = region.base_addr();
            let _span = tracing::debug_span!("adding_region", size, ?base).entered();

            // Is the region aligned on the heap's minimum page size? If not, we
            // need to align it.
            if !base.is_aligned(self.min_size) {
                let new_base = base.align_up(self.min_size);
                tracing::trace!(region.new_base = ?new_base, "base address not aligned!");
                region = Region::new(new_base, region.size(), RegionKind::FREE);
            }

            // Is the size of the region a power of two? The buddy block algorithm
            // requires each free block to be a power of two.
            if !size.is_power_of_two() {
                // If the region is not a power of two, split it down to the nearest
                // power of two.
                let prev_power_of_two = prev_power_of_two(size);
                tracing::debug!(prev_power_of_two, "not a power of two!");
                let region2 = region.split_back(prev_power_of_two).unwrap();

                // If the region we split off is larger than the minimum page size,
                // we can try to add it as well.
                if region2.size() >= self.min_size {
                    tracing::debug!("adding split-off region");
                    next_region = Some(region2);
                } else {
                    // Otherwise, we can't use it --- we'll have to leak it.
                    // TODO(eliza):
                    //  figure out a nice way to use stuff that won't fit for "some
                    //  other purpose"?
                    // NOTE:
                    //  in practice these might just be the two "bonus bytes" that
                    //  the free regions in our memory map have for some kind of
                    //  reason (on x84).
                    // TODO(eliza):
                    //  figure out why free regions in the memory map are all
                    //  misaligned by two bytes.
                    tracing::debug!(
                        region = ?region2,
                        min_size = self.min_size,
                        "leaking a region smaller than min page size"
                    );
                }
            }

            // Update the base virtual address of the heap.
            let region_vaddr = region.base_addr().as_usize() + self.offset();
            self.base_vaddr.fetch_min(region_vaddr, AcqRel);

            // ...and actually add the block to a free list.
            let block = Free::new(region, self.offset());
            unsafe { self.push_block(block) };
        }

        Ok(())
    }

    unsafe fn alloc_inner(&self, layout: Layout) -> Option<ptr::NonNull<Free>> {
        // This is the minimum order necessary for the requested allocation ---
        // the first free list we'll check.
        let order = self.order_for(layout)?;
        tracing::trace!(?order);

        // Try each free list, starting at the minimum necessary order.
        for (idx, free_list) in self.free_lists.as_ref()[order..].iter().enumerate() {
            tracing::trace!(curr_order = idx + order);

            // Is there an available block on this free list?
            let mut free_list = free_list.lock();
            if let Some(mut block) = free_list.pop_back() {
                let block = unsafe { block.as_mut() };
                tracing::trace!(?block, ?free_list, "found");

                // Unless this is the free list on which we'd expect to find a
                // block of the requested size (the first free list we checked),
                // the block is larger than the requested allocation. In that
                // case, we'll need to split it down and push the remainder onto
                // the appropriate free lists.
                if idx > 0 {
                    let curr_order = idx + order;
                    tracing::trace!(?curr_order, ?order, "split down");
                    self.split_down(block, curr_order, order);
                }

                // Change the block's magic to indicate that it is allocated, so
                // that we can avoid checking the free list if we try to merge
                // it before the first word is written to.
                block.make_busy();
                tracing::trace!(?block, "made busy");
                self.allocated_size.fetch_add(block.size(), Release);
                return Some(block.into());
            }
        }
        None
    }

    unsafe fn dealloc_inner(&self, paddr: PAddr, layout: Layout) -> Result<()> {
        // Find the order of the free list on which the freed range belongs.
        let min_order = self.order_for(layout);
        tracing::trace!(?min_order);
        let min_order = min_order.ok_or_else(AllocErr::oom)?;

        let Some(size) = self.size_for(layout) else {
            // XXX(eliza): is it better to just leak it?
            panic!(
                "couldn't determine the correct layout for an allocation \
                we previously allocated successfully, what the actual fuck!\n \
                addr={:?}; layout={:?}; min_order={}",
                paddr, layout, min_order,
            )
        };

        // Construct a new free block.
        let mut block =
            unsafe { Free::new(Region::new(paddr, size, RegionKind::FREE), self.offset()) };

        // Starting at the minimum order on which the freed range will fit
        for (idx, free_list) in self.free_lists.as_ref()[min_order..].iter().enumerate() {
            let curr_order = idx + min_order;
            let mut free_list = free_list.lock();

            // Is there a free buddy block at this order?
            if let Some(mut buddy) = unsafe { self.take_buddy(block, curr_order, &mut free_list) } {
                // Okay, merge the blocks, and try the next order!
                if buddy < block {
                    mem::swap(&mut block, &mut buddy);
                }
                unsafe {
                    block.as_mut().merge(buddy.as_mut());
                }
                tracing::trace!(?buddy, ?block, "merged with buddy");
                // Keep merging!
            } else {
                // Okay, we can't keep merging, so push the block on the current
                // free list.
                free_list.push_front(block);
                tracing::trace!("deallocated block");
                self.allocated_size.fetch_sub(size, Release);
                return Ok(());
            }
        }

        unreachable!("we will always iterate over at least one free list");
    }

    #[tracing::instrument(skip(self), level = "trace")]
    unsafe fn push_block(&self, block: ptr::NonNull<Free>) {
        let block_size = block.as_ref().size();
        let order = self.order_for_size(block_size);
        tracing::trace!(block = ?block.as_ref(), block.order = order);
        let free_lists = self.free_lists.as_ref();
        if order > free_lists.len() {
            todo!("(eliza): choppity chop chop down the block!");
        }
        free_lists[order].lock().push_front(block);
        let mut sz = self.heap_size.load(Acquire);
        while let Err(actual) =
            // TODO(eliza): if this overflows that's bad news lol...
            self.heap_size
                    .compare_exchange_weak(sz, sz + block_size, AcqRel, Acquire)
        {
            sz = actual;
        }
    }

    /// Removes `block`'s buddy from the free list and returns it, if it is free
    ///
    /// The "buddy" of a block is the block from which that block was split off
    /// to reach its current order, and therefore the block with which it could
    /// be merged to reach the target order.
    unsafe fn take_buddy(
        &self,
        block: ptr::NonNull<Free>,
        order: usize,
        free_list: &mut List<Free>,
    ) -> Option<ptr::NonNull<Free>> {
        let size = self.size_for_order(order);
        let base = self.base_vaddr.load(Relaxed);

        if base == usize::MAX {
            // This is a bug.
            tracing::error!("cannot find buddy block; heap not initialized!");
            return None;
        }

        tracing::trace!(
            heap.base = fmt::hex(base),
            block.addr = ?block,
            block.order = order,
            block.size = size,
            "calculating buddy"
        );

        // Find the relative offset of `block` from the base of the heap.
        let rel_offset = block.as_ptr() as usize - base;
        let buddy_offset = rel_offset ^ (1 << order);
        let buddy = (base + buddy_offset) as *mut Free;
        tracing::trace!(
            block.rel_offset = fmt::hex(rel_offset),
            buddy.offset = fmt::hex(buddy_offset),
            buddy.addr = ?buddy,
        );

        if ptr::eq(buddy as *const _, block.as_ptr() as *const _) {
            tracing::trace!("buddy block is the same as self");
            return None;
        }

        let buddy = unsafe {
            // Safety: we constructed this address via a usize add of two
            // values we know are not 0, so this should not be null, and
            // it's okay to use `new_unchecked`.
            // TODO(eliza): we should probably die horribly if that add
            // *does* overflow i guess...
            ptr::NonNull::new_unchecked(buddy)
        };

        // Check if the buddy block is definitely in use before removing it from
        // the free list.
        //
        // `is_maybe_free` returns a *hint* --- if it returns `false`, we know
        // the block is in use, so we don't have to remove it from the free list.
        let block = unsafe { buddy.as_ref() };
        if block.is_maybe_free() {
            tracing::trace!(
                buddy.block = ?block,
                buddy.addr = ?buddy, "trying to remove buddy..."
            );
            debug_assert_eq!(block.size(), size, "buddy block did not have correct size");
            // Okay, now try to remove the buddy from its free list. If it's not
            // free, this will return `None`.
            return free_list.remove(buddy);
        }

        // Otherwise, the buddy block is currently in use.
        None
    }

    /// Split a block of order `order` down to order `target_order`.
    #[tracing::instrument(skip(self), level = "trace")]
    fn split_down(&self, block: &mut Free, mut order: usize, target_order: usize) {
        let mut size = block.size();
        debug_assert_eq!(
            size,
            self.size_for_order(order),
            "a block was a weird size for some reason"
        );

        let free_lists = self.free_lists.as_ref();
        while order > target_order {
            order -= 1;
            size >>= 1;

            tracing::trace!(order, target_order, size, ?block, "split at");
            let new_block = block
                .split_back(size, self.offset())
                .expect("block too small to split!");
            tracing::trace!(?block, ?new_block);
            free_lists[order].lock().push_front(new_block);
        }
    }
}

unsafe impl<S, const FREE_LISTS: usize> page::Alloc<S> for Alloc<FREE_LISTS>
where
    S: Size + fmt::Display,
{
    /// Allocate a range of at least `len` pages.
    ///
    /// If `len` is not a power of two, the length is rounded up to the next
    /// power of two. The returned `PageRange` struct stores the actual length
    /// of the allocated page range.
    ///
    /// # Returns
    /// - `Ok(PageRange)` if a range of pages was successfully allocated
    /// - `Err` if the requested range could not be satisfied by this allocator.
    fn alloc_range(&self, size: S, len: usize) -> Result<PageRange<PAddr, S>> {
        let span = tracing::trace_span!("alloc_range", size = size.as_usize(), len);
        let _e = span.enter();

        debug_assert!(
            size.as_usize().is_power_of_two(),
            "page size must be a power of 2; size={size}",
        );

        let actual_len = if len.is_power_of_two() {
            len
        } else {
            let next = len.next_power_of_two();
            tracing::debug!(
                requested.len = len,
                rounded.len = next,
                "rounding up page range length to next power of 2"
            );
            next
        };

        let total_size = size
            .as_usize()
            // If the size of the page range would overflow, we *definitely*
            // can't allocate that lol.
            .checked_mul(actual_len)
            .ok_or_else(AllocErr::oom)?;

        debug_assert!(
            total_size.is_power_of_two(),
            "total size of page range must be a power of 2; total_size={total_size} size={size} len={actual_len}",
        );

        #[cfg(debug_assertions)]
        let layout = Layout::from_size_align(total_size, size.as_usize())
            .expect("page ranges should have valid (power of 2) size/align");
        #[cfg(not(debug_assertions))]
        let layout = unsafe {
            // Safety: we expect all page sizes to be powers of 2.
            Layout::from_size_align_unchecked(total_size, size.as_usize())
        };

        // Try to allocate the page range
        let block = unsafe { self.alloc_inner(layout) }.ok_or_else(AllocErr::oom)?;

        // Return the allocation!
        let range = unsafe { block.as_ref() }.region().page_range(size);
        tracing::debug!(
            ?range,
            requested.size = size.as_usize(),
            requested.len = len,
            actual.len = actual_len,
            "allocated"
        );
        range.map_err(Into::into)
    }

    /// Deallocate a range of pages.
    ///
    /// # Returns
    /// - `Ok(())` if a range of pages was successfully deallocated
    /// - `Err` if the requested range could not be deallocated.
    fn dealloc_range(&self, range: PageRange<PAddr, S>) -> Result<()> {
        let page_size = range.page_size().as_usize();
        let len = range.len();
        let base = range.base_addr();
        let span = tracing::trace_span!(
            "dealloc_range",
            range.base = ?base,
            range.page_size = page_size,
            range.len = len
        );
        let _e = span.enter();

        let total_size = page_size
            .checked_mul(len)
            .expect("page range size shouldn't overflow, this is super bad news");

        #[cfg(debug_assertions)]
        let layout = Layout::from_size_align(total_size, page_size)
            .expect("page ranges should be well-aligned");
        #[cfg(not(debug_assertions))]
        let layout = unsafe {
            // Safety: we expect page ranges to be well-aligned.
            Layout::from_size_align_unchecked(total_size, page_size)
        };

        unsafe {
            self.dealloc_inner(base, layout)?;
        }

        tracing::debug!(
            range.base = ?range.base_addr(),
            range.page_size = range.page_size().as_usize(),
            range.len = range.len(),
            "deallocated"
        );
        Ok(())
    }
}

unsafe impl<const FREE_LISTS: usize> GlobalAlloc for Alloc<FREE_LISTS> {
    #[tracing::instrument(level = "trace", skip(self))]
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        self.alloc_inner(layout)
            .map(ptr::NonNull::as_ptr)
            .unwrap_or_else(ptr::null_mut)
            .cast::<u8>()
    }

    #[tracing::instrument(level = "trace", skip(self))]
    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        let addr = match (ptr as usize).checked_sub(self.offset()) {
            Some(addr) => addr,
            None => panic!(
                "pointer is not to a kernel VAddr! ptr={ptr:p}; offset={:x}",
                self.offset()
            ),
        };

        let addr = PAddr::from_usize(addr);
        match self.dealloc_inner(addr, layout) {
            Ok(_) => {}
            Err(_) => panic!(
                "deallocating {addr:?} with layout {layout:?} failed! this shouldn't happen!",
            ),
        }
    }
}

// ==== impl Free ====

impl Free {
    const MAGIC: usize = 0xF4EE_B10C; // haha lol it spells "free block"
    const MAGIC_BUSY: usize = 0xB4D_B10C;

    /// # Safety
    ///
    /// Don't construct a free list entry for a region that isn't actually free,
    /// that would be, uh, bad, lol.
    pub unsafe fn new(region: Region, offset: usize) -> ptr::NonNull<Free> {
        tracing::trace!(?region, offset = fmt::hex(offset));

        let ptr = ((region.base_addr().as_ptr::<Free>() as usize) + offset) as *mut _;
        let nn = ptr::NonNull::new(ptr)
            .expect("definitely don't try to free the zero page; that's evil");

        ptr::write_volatile(
            ptr,
            Free {
                magic: Self::MAGIC,
                links: list::Links::default(),
                meta: region,
            },
        );
        nn
    }

    pub fn split_front(&mut self, size: usize, offset: usize) -> Option<ptr::NonNull<Self>> {
        debug_assert_eq!(
            self.magic,
            Self::MAGIC,
            "MY MAGIC WAS MESSED UP! self={:#?}, self.magic={:#x}",
            self,
            self.magic
        );
        let new_meta = self.meta.split_front(size)?;
        let new_free = unsafe { Self::new(new_meta, offset) };
        Some(new_free)
    }

    pub fn split_back(&mut self, size: usize, offset: usize) -> Option<ptr::NonNull<Self>> {
        debug_assert_eq!(
            self.magic,
            Self::MAGIC,
            "MY MAGIC WAS MESSED UP! self={self:#?}, self.magic={:#x}",
            self.magic
        );
        debug_assert!(
            !self.links.is_linked(),
            "tried to split a block while it was on a free list!"
        );

        let new_meta = self.meta.split_back(size)?;
        debug_assert_ne!(new_meta, self.meta);
        debug_assert_eq!(new_meta.size(), size);
        debug_assert_eq!(self.meta.size(), size);
        tracing::trace!(?new_meta, ?self.meta, "split meta");

        let new_free = unsafe { Self::new(new_meta, offset) };
        debug_assert_ne!(new_free, ptr::NonNull::from(self));

        Some(new_free)
    }

    pub fn merge(&mut self, other: &mut Self) {
        debug_assert_eq!(
            self.magic,
            Self::MAGIC,
            "MY MAGIC WAS MESSED UP! self={self:#?}, self.magic={:#x}",
            self.magic
        );
        debug_assert_eq!(
            other.magic,
            Self::MAGIC,
            "THEIR MAGIC WAS MESSED UP! other={other:#?}, other.magic={:#x}",
            other.magic
        );
        assert!(
            !other.links.is_linked(),
            "tried to merge with a block that's already linked! other={other:?}",
        );
        self.meta.merge(&mut other.meta)
    }

    pub fn region(&self) -> Region {
        self.meta.clone() // XXX(eliza): `Region` should probly be `Copy`.
    }

    pub fn size(&self) -> usize {
        self.meta.size()
    }

    /// Returns `true` if the region *might* be free.
    ///
    /// If this returns false, the region is *definitely* not free. If it
    /// returns true, the region is *possibly* free, and the free list should be
    /// checked.
    ///
    /// This is intended as a hint to avoid traversing the free list for blocks
    /// which are definitely in use, not as an authoritative source.
    #[inline]
    pub fn is_maybe_free(&self) -> bool {
        self.magic == Self::MAGIC
    }

    pub fn make_busy(&mut self) {
        self.magic = Self::MAGIC_BUSY;
    }
}

unsafe impl Linked<list::Links<Self>> for Free {
    type Handle = ptr::NonNull<Free>;

    #[inline]
    fn into_ptr(r: Self::Handle) -> ptr::NonNull<Self> {
        r
    }

    #[inline]
    unsafe fn from_ptr(ptr: ptr::NonNull<Self>) -> Self::Handle {
        ptr
    }

    #[inline]
    unsafe fn links(ptr: ptr::NonNull<Self>) -> ptr::NonNull<list::Links<Self>> {
        // Safety: using `ptr::addr_of_mut!` avoids creating a temporary
        // reference, which stacked borrows dislikes.
        let links = ptr::addr_of_mut!((*ptr.as_ptr()).links);
        // Safety: it's fine to use `new_unchecked` here; if the pointer that we
        // offset to the `links` field is not null (which it shouldn't be, as we
        // received it as a `NonNull`), the offset pointer should therefore also
        // not be null.
        ptr::NonNull::new_unchecked(links)
    }
}

impl fmt::Debug for Free {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let Self { magic, links, meta } = self;
        f.debug_struct("Free")
            .field("magic", &fmt::hex(magic))
            .field("links", links)
            .field("meta", meta)
            .finish()
    }
}

fn prev_power_of_two(n: usize) -> usize {
    (n / 2).next_power_of_two()
}