cordyceps/sorted_list.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
//! [Intrusive], singly-linked, sorted, linked list.
//!
//! See the documentation for the [`SortedList`] and [`SortedListIter`] types for
//! details.
//!
//! [Intrusive]: crate#intrusive-data-structures
use crate::{Linked, Stack};
use core::{
cmp::{Ord, Ordering},
fmt,
marker::PhantomData,
ptr::NonNull,
};
pub use crate::stack::Links;
/// A sorted singly linked list
///
/// This behaves similar to [`Stack`], in that it is a singly linked list,
/// however items are stored in an ordered fashion. This means that insertion
/// is an _O_(_n_) operation, and retrieval of the first item is an _O_(1) operation.
///
/// It allows for a user selected ordering operation. If your type `T` implements
/// [`Ord`]:
///
/// * Consider using [`SortedList::new_min()`] if you want **smallest** items sorted first.
/// * Consider using [`SortedList::new_max()`] if you want **largest** items sorted first.
///
/// If your type `T` does NOT implement [`Ord`], or you want to use
/// a custom sorting anyway, consider using [`SortedList::new_with_cmp()`]
///
/// In order to be part of a `SortedList`, a type `T` must implement
/// the [`Linked`] trait for [`sorted_list::Links<T>`](Links), which is an alias for
/// [`stack::Links<T>`](Links). This means that you can link the same element into
/// either structure, but you can't have something that's linked into a `SortedList`
/// and a `Stack` at the same time (without wrapper structs that have separate sets
/// of links, left as an exercise for the reader).
///
/// Pushing elements into a `SortedList` takes ownership of those elements
/// through an owning [`Handle` type](Linked::Handle). Dropping a
/// `SortedList` drops all elements currently linked into the stack.
pub struct SortedList<T: Linked<Links<T>>> {
head: Option<NonNull<T>>,
// Returns if LHS is less/same/greater than RHS
func: fn(&T, &T) -> Ordering,
}
#[inline]
fn invert_sort<T: Ord>(a: &T, b: &T) -> Ordering {
// Inverted sort order!
T::cmp(b, a)
}
impl<T> SortedList<T>
where
T: Linked<Links<T>>,
T: Ord,
{
/// Create a new (empty) sorted list, sorted LEAST FIRST
///
/// * Consider using [`SortedList::new_max()`] if you want **largest** items sorted first.
/// * Consider using [`SortedList::new_with_cmp()`] if you want to provide your own sorting
/// implementation.
///
/// If two items are considered of equal value, new values will be placed AFTER
/// old values.
#[must_use]
pub const fn new_min() -> Self {
Self::new_with_cmp(T::cmp)
}
/// Create a new sorted list, consuming the stack, sorted LEAST FIRST
#[must_use]
pub fn from_stack_min(stack: Stack<T>) -> Self {
Self::from_stack_with_cmp(stack, T::cmp)
}
/// Create a new (empty) sorted list, sorted GREATEST FIRST
///
/// * Consider using [`SortedList::new_min()`] if you want **smallest** items sorted first.
/// * Consider using [`SortedList::new_with_cmp()`] if you want to provide your own sorting
/// implementation.
///
/// If two items are considered of equal value, new values will be placed AFTER
/// old values.
#[must_use]
pub const fn new_max() -> Self {
Self::new_with_cmp(invert_sort::<T>)
}
/// Create a new sorted list, consuming the stack, sorted GREATEST FIRST
#[must_use]
pub fn from_stack_max(stack: Stack<T>) -> Self {
Self::from_stack_with_cmp(stack, invert_sort::<T>)
}
}
impl<T: Linked<Links<T>>> SortedList<T> {
/// Create a new (empty) sorted list with the given ordering function
///
/// If your type T implements [`Ord`]:
///
/// * Consider using [`SortedList::new_min()`] if you want **smallest** items sorted first.
/// * Consider using [`SortedList::new_max()`] if you want **largest** items sorted first.
///
/// If `T` contained an `i32`, and you wanted the SMALLEST items at the
/// front, then you could provide a function something like:
///
/// ```rust
/// let f: fn(&i32, &i32) -> core::cmp::Ordering = |lhs, rhs| {
/// lhs.cmp(rhs)
/// };
/// ```
///
/// SortedList takes a function (and not just [Ord]) so you can use it on types
/// that don't have a general way of ordering them, allowing you to select a
/// specific metric within the sorting function.
///
/// If two items are considered of equal value, new values will be placed AFTER
/// old values.
pub const fn new_with_cmp(f: fn(&T, &T) -> Ordering) -> Self {
Self {
func: f,
head: None,
}
}
/// Create a new sorted list, consuming the stack, using the provided ordering function
pub fn from_stack_with_cmp(stack: Stack<T>, f: fn(&T, &T) -> Ordering) -> Self {
let mut slist = Self::new_with_cmp(f);
slist.extend(stack);
slist
}
/// Pop the front-most item from the list, returning it by ownership (if it exists)
///
/// Note that "front" here refers to the sorted ordering. If this list was created
/// with [`SortedList::new_min`], the SMALLEST item will be popped. If this was
/// created with [`SortedList::new_max`], the LARGEST item will be popped.
///
/// This is an _O_(1) operation.
#[must_use]
pub fn pop_front(&mut self) -> Option<T::Handle> {
test_trace!(?self.head, "SortedList::pop_front");
let head = self.head.take()?;
unsafe {
// Safety: we have exclusive ownership over this chunk of stack.
// advance the head link to the next node after the current one (if
// there is one).
self.head = T::links(head).as_mut().next.with_mut(|next| (*next).take());
test_trace!(?self.head, "SortedList::pop -> popped");
// return the current node
Some(T::from_ptr(head))
}
}
/// Insert a single item into the list, in its sorted order position
///
/// Note that if the inserted item is [`Equal`](Ordering::Equal) to another
/// item in the list, the newest item is always sorted AFTER the existing
/// item.
///
/// This is an _O_(_n_) operation.
pub fn insert(&mut self, element: T::Handle) {
let eptr = T::into_ptr(element);
test_trace!(?eptr, ?self.head, "SortedList::insert");
debug_assert!(
unsafe { T::links(eptr).as_ref().next.with(|n| (*n).is_none()) },
"Inserted items should not already be part of a list"
);
// Take a long-lived reference to the new element
let eref = unsafe { eptr.as_ref() };
// Special case for empty head
//
// If the head is null, then just place the item
let Some(mut cursor) = self.head else {
self.head = Some(eptr);
return;
};
// Special case for head: do we replace current head with new element?
{
// compare, but make sure we drop the live reference to the cursor
// so to be extra sure about NOT violating provenance, when we
// potentially mutate the cursor below, and we really don't want
// a shared reference to be live.
let cmp = {
let cref = unsafe { cursor.as_ref() };
(self.func)(cref, eref)
};
// If cursor node is LESS or EQUAL: keep moving.
// If cursor node is GREATER: we need to place the new item BEFORE
if cmp == Ordering::Greater {
unsafe {
let links = T::links(eptr).as_mut();
links.next.with_mut(|next| {
*next = self.head.replace(eptr);
});
return;
}
}
}
// On every iteration of the loop, we know that the new element should
// be placed AFTER the current value of `cursor`, meaning that we need
// to decide whether we:
//
// * just append (if next is null)
// * insert between cursor and cursor.next (if elem is < c.next)
// * just iterate (if elem >= c.next)
loop {
// Safety: We have exclusive access to the list, we are allowed to
// access and mutate it (carefully)
unsafe {
// Get the cursor's links
let clinks = T::links(cursor).as_mut();
// Peek into the cursor's next item
let next = clinks.next.with_mut(|next| {
// We can take a reference here, as we have exclusive access
let mutref = &mut *next;
if let Some(n) = mutref {
// If next is some, store this pointer
let nptr: NonNull<T> = *n;
// Then compare the next element with the new element
let cmp = {
let nref: &T = nptr.as_ref();
(self.func)(nref, eref)
};
if cmp == Ordering::Greater {
// As above, if cursor.next > element, then we
// need to insert between cursor and next.
//
// First, get the current element's links...
let elinks = T::links(eptr).as_mut();
// ...then store cursor.next.next in element.next,
// and store element in cursor.next.
elinks.next.with_mut(|enext| {
*enext = mutref.replace(eptr);
});
// If we have placed element, there is no next value
// for cursor.
None
} else {
// If cursor.next <= element, then we just need to
// iterate, so return the NonNull that represents
// cursor.next, so we can move cursor there.
Some(nptr)
}
} else {
// "just append" case - assign element to cursor.next
*mutref = Some(eptr);
// If we have placed element, there is no next value
// for cursor
None
}
});
// We do the assignment through this tricky return to ensure that the
// mutable reference to cursor.next we held as "mutref" above has been
// dropped, so we are not mutating `cursor` while a reference derived
// from it's provenance is live.
//
// We also can't early return inside the loop because all of the body
// is inside a closure.
//
// This might be overly cautious, refactor carefully (with miri).
let Some(n) = next else {
// We're done, return
return;
};
cursor = n;
}
}
}
/// Iterate through the items of the list, in sorted order
pub fn iter(&self) -> SortedListIter<'_, T> {
SortedListIter {
_plt: PhantomData,
node: self.head,
}
}
}
impl<T: Linked<Links<T>>> Extend<T::Handle> for SortedList<T> {
fn extend<I: IntoIterator<Item = T::Handle>>(&mut self, iter: I) {
for elem in iter {
self.insert(elem);
}
}
}
impl<T> fmt::Debug for SortedList<T>
where
T: Linked<Links<T>>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { head, func: _ } = self;
f.debug_struct("SortedList").field("head", head).finish()
}
}
impl<T: Linked<Links<T>>> Drop for SortedList<T> {
fn drop(&mut self) {
// We just turn the list into a stack then run the stack drop code.
// It already has correct + tested logic for dropping a singly
// linked list of items one at a time.
let stack = Stack {
head: self.head.take(),
};
drop(stack);
}
}
/// A borrowing iterator of a [`SortedList`]
pub struct SortedListIter<'a, T: Linked<Links<T>>> {
_plt: PhantomData<&'a SortedList<T>>,
node: Option<NonNull<T>>,
}
impl<'a, T: Linked<Links<T>>> Iterator for SortedListIter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let nn = self.node.take()?;
unsafe {
// Advance our pointer to next
let links = T::links(nn).as_ref();
self.node = links.next.with(|t| *t);
Some(nn.as_ref())
}
}
}
#[cfg(test)]
mod loom {
use super::*;
use crate::loom;
use crate::stack::test_util::Entry;
#[test]
fn builtin_sort_min() {
loom::model(|| {
let mut slist = SortedList::<Entry>::new_min();
// Insert out of order
slist.insert(Entry::new(20));
slist.insert(Entry::new(10));
slist.insert(Entry::new(30));
slist.insert(Entry::new(25));
slist.insert(Entry::new(35));
slist.insert(Entry::new(1));
slist.insert(Entry::new(2));
slist.insert(Entry::new(3));
// expected is in order
let expected = [1, 2, 3, 10, 20, 25, 30, 35];
// Does iteration work (twice)?
{
let mut ct = 0;
let siter = slist.iter();
for (l, r) in expected.iter().zip(siter) {
ct += 1;
assert_eq!(*l, r.val);
}
assert_eq!(ct, expected.len());
}
{
let mut ct = 0;
let siter = slist.iter();
for (l, r) in expected.iter().zip(siter) {
ct += 1;
assert_eq!(*l, r.val);
}
assert_eq!(ct, expected.len());
}
// Does draining work (once)?
{
let mut ct = 0;
for exp in expected.iter() {
let act = slist.pop_front().unwrap();
ct += 1;
assert_eq!(*exp, act.val);
}
assert_eq!(ct, expected.len());
assert!(slist.pop_front().is_none());
}
})
}
#[test]
fn builtin_sort_max() {
loom::model(|| {
let mut slist = SortedList::<Entry>::new_max();
// Insert out of order
slist.insert(Entry::new(20));
slist.insert(Entry::new(10));
slist.insert(Entry::new(30));
slist.insert(Entry::new(25));
slist.insert(Entry::new(35));
slist.insert(Entry::new(1));
slist.insert(Entry::new(2));
slist.insert(Entry::new(3));
// expected is in order (reverse!)
let expected = [35, 30, 25, 20, 10, 3, 2, 1];
// Does iteration work (twice)?
{
let mut ct = 0;
let siter = slist.iter();
for (l, r) in expected.iter().zip(siter) {
ct += 1;
assert_eq!(*l, r.val);
}
assert_eq!(ct, expected.len());
}
{
let mut ct = 0;
let siter = slist.iter();
for (l, r) in expected.iter().zip(siter) {
ct += 1;
assert_eq!(*l, r.val);
}
assert_eq!(ct, expected.len());
}
// Does draining work (once)?
{
let mut ct = 0;
for exp in expected.iter() {
let act = slist.pop_front().unwrap();
ct += 1;
assert_eq!(*exp, act.val);
}
assert_eq!(ct, expected.len());
assert!(slist.pop_front().is_none());
}
})
}
#[test]
fn slist_basic() {
loom::model(|| {
let mut slist = SortedList::<Entry>::new_with_cmp(|lhs, rhs| lhs.val.cmp(&rhs.val));
// Insert out of order
slist.insert(Entry::new(20));
slist.insert(Entry::new(10));
slist.insert(Entry::new(30));
slist.insert(Entry::new(25));
slist.insert(Entry::new(35));
slist.insert(Entry::new(1));
slist.insert(Entry::new(2));
slist.insert(Entry::new(3));
// expected is in order
let expected = [1, 2, 3, 10, 20, 25, 30, 35];
// Does iteration work (twice)?
{
let mut ct = 0;
let siter = slist.iter();
for (l, r) in expected.iter().zip(siter) {
ct += 1;
assert_eq!(*l, r.val);
}
assert_eq!(ct, expected.len());
}
{
let mut ct = 0;
let siter = slist.iter();
for (l, r) in expected.iter().zip(siter) {
ct += 1;
assert_eq!(*l, r.val);
}
assert_eq!(ct, expected.len());
}
// Does draining work (once)?
{
let mut ct = 0;
for exp in expected.iter() {
let act = slist.pop_front().unwrap();
ct += 1;
assert_eq!(*exp, act.val);
}
assert_eq!(ct, expected.len());
assert!(slist.pop_front().is_none());
}
// Do a little pop and remove dance to make sure we correctly unset
// next on popped items (there is a debug assert for this)
slist.insert(Entry::new(20));
slist.insert(Entry::new(10));
slist.insert(Entry::new(30));
let x = slist.pop_front().unwrap();
slist.insert(x);
let y = slist.pop_front().unwrap();
let z = slist.pop_front().unwrap();
slist.insert(y);
slist.insert(z);
})
}
}